Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey

2021 ◽  
Author(s):  
Halil Akinci ◽  
Mustafa Zeybek
2018 ◽  
Vol 10 (8) ◽  
pp. 1252 ◽  
Author(s):  
Prima Kadavi ◽  
Chang-Wook Lee ◽  
Saro Lee

The main purpose of this study was to produce landslide susceptibility maps using various ensemble-based machine learning models (i.e., the AdaBoost, LogitBoost, Multiclass Classifier, and Bagging models) for the Sacheon-myeon area of South Korea. A landslide inventory map including a total of 762 landslides was compiled based on reports and aerial photograph interpretations. The landslides were randomly separated into two datasets: 70% of landslides were selected for the model establishment and 30% were used for validation purposes. Additionally, 20 landslide condition factors divided into five categories (topographic factors, hydrological factors, soil map, geological map, and forest map) were considered in the landslide susceptibility mapping. The relationships among landslide occurrence and landslide conditioning factors were analyzed and the landslide susceptibility maps were calculated and drawn using the AdaBoost, LogitBoost, Multiclass Classifier, and Bagging models. Finally, the maps were validated using the area under the curve (AUC) method. The Multiclass Classifier method had higher prediction accuracy (85.9%) than the Bagging (AUC = 85.4%), LogitBoost (AUC = 84.8%), and AdaBoost (84.0%) methods.


2021 ◽  
Author(s):  
Ali Nouh Mabdeh ◽  
Akif Al-Fugara ◽  
Mohammad Ahmadlou ◽  
Biswajeet Pradhan

Abstract Indivisual machine learning models show different limitations such as low generalization power for modeling nonlinear phenomena with complex behavior. In recent years, one of the best approaches to this issue is to use ensemble models. The purpose of this paper is to investigate the predictive power and modeling of three novel ensemble models constructed with four machine learning models: Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive Bayes (NB) models based on three approaches of Bagging, boosting and Random Subspace (RS) in landslide susceptibility mapping (LSM) in the Province of Ajloun in Jordan. A total number of 91 landslide locations along with 16 conditioning factors in LSM were identified and used. Also, before modeling, the selection of effective conditioning factors in LSM was done using genetic algorithm and four single models including DT, KNN, NB and SVM. The selected factors were used in modeling with individual and ensemble models. The results show that the area under the receiver operating characteristic curve (AUROC) for ensemble models is significantly higher than the individual models and the AUC for ensemble models was on average 14% higher than individual models. Based on the results, the most accurate models were RS ensemble model (AUROC = 0.850), Boosting (AUROC = 0.848) and Bagging (AUROC = 0.814), respectively. This study showed that by combining the results of simple machine learning models and making ensemble models, models with the desired accuracy can be achieved.


2021 ◽  
Vol 10 (2) ◽  
pp. 93
Author(s):  
Wei Xie ◽  
Xiaoshuang Li ◽  
Wenbin Jian ◽  
Yang Yang ◽  
Hongwei Liu ◽  
...  

Landslide susceptibility mapping (LSM) could be an effective way to prevent landslide hazards and mitigate losses. The choice of conditional factors is crucial to the results of LSM, and the selection of models also plays an important role. In this study, a hybrid method including GeoDetector and machine learning cluster was developed to provide a new perspective on how to address these two issues. We defined redundant factors by quantitatively analyzing the single impact and interactive impact of the factors, which was analyzed by GeoDetector, the effect of this step was examined using mean absolute error (MAE). The machine learning cluster contains four models (artificial neural network (ANN), Bayesian network (BN), logistic regression (LR), and support vector machines (SVM)) and automatically selects the best one for generating LSM. The receiver operating characteristic (ROC) curve, prediction accuracy, and the seed cell area index (SCAI) methods were used to evaluate these methods. The results show that the SVM model had the best performance in the machine learning cluster with the area under the ROC curve of 0.928 and with an accuracy of 83.86%. Therefore, SVM was chosen as the assessment model to map the landslide susceptibility of the study area. The landslide susceptibility map demonstrated fit with landslide inventory, indicated the hybrid method is effective in screening landslide influences and assessing landslide susceptibility.


2021 ◽  
Author(s):  
Rui Liu ◽  
Xin Yang ◽  
Chong Xu ◽  
Luyao Li ◽  
Xiangqiang Zeng

Abstract Landslide susceptibility mapping (LSM) is a useful tool to estimate the probability of landslide occurrence, providing a scientific basis for natural hazards prevention, land use planning, and economic development in landslide-prone areas. To date, a large number of machine learning methods have been applied to LSM, and recently the advanced Convolutional Neural Network (CNN) has been gradually adopted to enhance the prediction accuracy of LSM. The objective of this study is to introduce a CNN based model in LSM and systematically compare its overall performance with the conventional machine learning models of random forest, logistic regression, and support vector machine. Herein, we selected the Jiuzhaigou region in Sichuan Province, China as the study area. A total number of 710 landslides and 12 predisposing factors were stacked to form spatial datasets for LSM. The ROC analysis and several statistical metrics, such as accuracy, root mean square error (RMSE), Kappa coefficient, sensitivity, and specificity were used to evaluate the performance of the models in the training and validation datasets. Finally, the trained models were calculated and the landslide susceptibility zones were mapped. Results suggest that both CNN and conventional machine-learning based models have a satisfactory performance (AUC: 85.72% − 90.17%). The CNN based model exhibits excellent good-of-fit and prediction capability, and achieves the highest performance (AUC: 90.17%) but also significantly reduces the salt-of-pepper effect, which indicates its great potential of application to LSM.


Sign in / Sign up

Export Citation Format

Share Document