scholarly journals Application of Ensemble-Based Machine Learning Models to Landslide Susceptibility Mapping

2018 ◽  
Vol 10 (8) ◽  
pp. 1252 ◽  
Author(s):  
Prima Kadavi ◽  
Chang-Wook Lee ◽  
Saro Lee

The main purpose of this study was to produce landslide susceptibility maps using various ensemble-based machine learning models (i.e., the AdaBoost, LogitBoost, Multiclass Classifier, and Bagging models) for the Sacheon-myeon area of South Korea. A landslide inventory map including a total of 762 landslides was compiled based on reports and aerial photograph interpretations. The landslides were randomly separated into two datasets: 70% of landslides were selected for the model establishment and 30% were used for validation purposes. Additionally, 20 landslide condition factors divided into five categories (topographic factors, hydrological factors, soil map, geological map, and forest map) were considered in the landslide susceptibility mapping. The relationships among landslide occurrence and landslide conditioning factors were analyzed and the landslide susceptibility maps were calculated and drawn using the AdaBoost, LogitBoost, Multiclass Classifier, and Bagging models. Finally, the maps were validated using the area under the curve (AUC) method. The Multiclass Classifier method had higher prediction accuracy (85.9%) than the Bagging (AUC = 85.4%), LogitBoost (AUC = 84.8%), and AdaBoost (84.0%) methods.

2021 ◽  
Author(s):  
Ali Nouh Mabdeh ◽  
Akif Al-Fugara ◽  
Mohammad Ahmadlou ◽  
Biswajeet Pradhan

Abstract Indivisual machine learning models show different limitations such as low generalization power for modeling nonlinear phenomena with complex behavior. In recent years, one of the best approaches to this issue is to use ensemble models. The purpose of this paper is to investigate the predictive power and modeling of three novel ensemble models constructed with four machine learning models: Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive Bayes (NB) models based on three approaches of Bagging, boosting and Random Subspace (RS) in landslide susceptibility mapping (LSM) in the Province of Ajloun in Jordan. A total number of 91 landslide locations along with 16 conditioning factors in LSM were identified and used. Also, before modeling, the selection of effective conditioning factors in LSM was done using genetic algorithm and four single models including DT, KNN, NB and SVM. The selected factors were used in modeling with individual and ensemble models. The results show that the area under the receiver operating characteristic curve (AUROC) for ensemble models is significantly higher than the individual models and the AUC for ensemble models was on average 14% higher than individual models. Based on the results, the most accurate models were RS ensemble model (AUROC = 0.850), Boosting (AUROC = 0.848) and Bagging (AUROC = 0.814), respectively. This study showed that by combining the results of simple machine learning models and making ensemble models, models with the desired accuracy can be achieved.


2019 ◽  
Vol 11 (1) ◽  
pp. 708-726
Author(s):  
Zorgati Anis ◽  
Gallala Wissem ◽  
Vakhshoori Vali ◽  
Habib Smida ◽  
Gaied Mohamed Essghaier

AbstractThe Tunisian North-western region, especially Tabarka and Ain-Drahim villages, presents many landslides every year. Therefore, the landslide susceptibility mapping is essential to frame zones with high landslide susceptibility, to avoid loss of lives and properties. In this study, two bivariate statistical models: the evidential belief functions (EBF) and the weight of evidence (WoE), were used to produce landslide susceptibility maps for the study area. For this, a landslide inventory map was mapped using aerial photo, satellite image and extensive field survey. A total of 451 landslides were randomly separated into two datasets: 316 landslides (70%) for modelling and 135 landslides (30%) for validation. Then, 11 landslide conditioning factors: elevation, slope, aspect, lithology, rainfall, normalized difference vegetation index (NDVI), land cover/use, plan curvature, profile curvature, distance to faults and distance to drainage networks, were considered for modelling. The EBF and WoE models were well validated using the Area Under the Receiver Operating Characteristic (AUROC) curve with a success rate of 87.9% and 89.5%, respectively, and a predictive rate of 84.8% and 86.5%, respectively. The landslide susceptibility maps were very similar by the two models, but the WoE model is more efficient and it can be useful in future planning for the current study area.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Trung-Hieu Tran ◽  
Nguyen Duc Dam ◽  
Fazal E. Jalal ◽  
Nadhir Al-Ansari ◽  
Lanh Si Ho ◽  
...  

The main objective of the study was to investigate performance of three soft computing models: Naïve Bayes (NB), Multilayer Perceptron (MLP) neural network classifier, and Alternating Decision Tree (ADT) in landslide susceptibility mapping of Pithoragarh District of Uttarakhand State, India. For this purpose, data of 91 past landslide locations and ten landslide influencing factors, namely, slope degree, curvature, aspect, land cover, slope forming materials (SFM), elevation, distance to rivers, geomorphology, overburden depth, and distance to roads were considered in the models study. Thematic maps of the Geological Survey of India (GSI), Google Earth images, and Aster Digital Elevation Model (DEM) were used for the development of landslide susceptibility maps in the Geographic Information System (GIS) environment. Landslide locations data was divided into a 70 : 30 ratio for the training (70%) and testing/validation (30%) of the three models. Standard statistical measures, namely, Positive Predicted Values (PPV), Negative Predicted Values (NPV), Sensitivity, Specificity, Mean Absolute Error (MAE), Root Mean Squire Error (RMSE), and Area under the ROC Curve (AUC) were used for the evaluation of the models. All the three soft computing models used in this study have shown good performance in the accurate development of landslide susceptibility maps, but performance of the ADT and MLP is better than NB. Therefore, these models can be used for the construction of accurate landslide susceptibility maps in other landslide-prone areas also.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 325 ◽  
Author(s):  
Guirong Wang ◽  
Xinxiang Lei ◽  
Wei Chen ◽  
Himan Shahabi ◽  
Ataollah Shirzadi

In this study, hybrid integration of MultiBoosting based on two artificial intelligence methods (the radial basis function network (RBFN) and credal decision tree (CDT) models) and geographic information systems (GIS) were used to establish landslide susceptibility maps, which were used to evaluate landslide susceptibility in Nanchuan County, China. First, the landslide inventory map was generated based on previous research results combined with GIS and aerial photos. Then, 298 landslides were identified, and the established dataset was divided into a training dataset (70%, 209 landslides) and a validation dataset (30%, 89 landslides) with ensured randomness, fairness, and symmetry of data segmentation. Sixteen landslide conditioning factors (altitude, profile curvature, plan curvature, slope aspect, slope angle, stream power index (SPI), topographical wetness index (TWI), sediment transport index (STI), distance to rivers, distance to roads, distance to faults, rainfall, NDVI, soil, land use, and lithology) were identified in the study area. Subsequently, the CDT, RBFN, and their ensembles with MultiBoosting (MCDT and MRBFN) were used in ArcGIS to generate the landslide susceptibility maps. The performances of the four landslide susceptibility maps were compared and verified based on the area under the curve (AUC). Finally, the verification results of the AUC evaluation show that the landslide susceptibility mapping generated by the MCDT model had the best performance.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 372 ◽  
Author(s):  
Zhongjun Ma ◽  
Shengwu Qin ◽  
Chen Cao ◽  
Jiangfeng Lv ◽  
Guangjie Li ◽  
...  

Landslides are one of the most frequent geomorphic hazards, and they often result in the loss of property and human life in the Changbai Mountain area (CMA), Northeast China. The objective of this study was to produce and compare landslide susceptibility maps for the CMA using an information content model (ICM) with three knowledge-driven methods (the artificial hierarchy process with the ICM (AHP-ICM), the entropy weight method with the ICM (EWM-ICM), and the rough set with the ICM (RS-ICM)) and to explore the influence of different knowledge-driven methods for a series of parameters on the accuracy of landslide susceptibility mapping (LSM). In this research, the landslide inventory data (145 landslides) were randomly divided into a training dataset: 70% (81 landslides) were used for training the models and 30% (35 landslides) were used for validation. In addition, 13 layers of landslide conditioning factors, namely, altitude, slope gradient, slope aspect, lithology, distance to faults, distance to roads, distance to rivers, annual precipitation, land type, normalized difference vegetation index (NDVI), topographic wetness index (TWI), plan curvature, and profile curvature, were taken as independent, causal predictors. Landslide susceptibility maps were developed using the ICM, RS-ICM, AHP-ICM, and EWM-ICM, in which weights were assigned to every conditioning factor. The resultant susceptibility was validated using the area under the ROC curve (AUC) method. The success accuracies of the landslide susceptibility maps produced by the ICM, RS-ICM, AHP-ICM, and EWM-ICM methods were 0.931, 0.939, 0.912, and 0.883, respectively, with prediction accuracy rates of 0.926, 0.927, 0.917, and 0.878 for the ICM, RS-ICM, AHP-ICM, and EWM-ICM, respectively. Hence, it can be concluded that the four models used in this study gave close results, with the RS-ICM exhibiting the best performance in landslide susceptibility mapping.


Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 483
Author(s):  
Yasin Wahid Rabby ◽  
Yingkui Li

Landslide susceptibility mapping is of critical importance to identify landslide-prone areas to reduce future landslides, causalities, and infrastructural damages. This paper presents landslide susceptibility maps at a regional scale for the Chittagong Hilly Areas (CHA), Bangladesh. The frequency ratio (FR) was integrated with the analytical hierarchy process (AHP) (FR_AHP) and logistic regression (LR) (FR_LR). A landslide inventory of 730 landslide locations and 13 landslide predisposing factors including elevation, slope, aspect, plan curvature, profile curvature, topographic wetness index (TWI), stream power index (SPI), land use/land cover, rainfall, distance from drainage network, distance from fault lines, lithology, and normalized difference vegetation index (NDVI) were used. Landslide locations were randomly split into training (80%) and validation (20%) sites to support the susceptibility analysis. A safe zone was determined based on a slope threshold for logistic regression using the exploratory data analysis. The same number of non-landslide locations were randomly selected from the safe zone to train the model (FR_LR). Success and prediction rate curves and statistical indices, including overall accuracy, were used to assess model performance. The success rate curves show that FR_LR showed the highest area under the curve (AUC) (79.46%), followed by the FR_AHP (77.15%). Statistical indices also showed that the FR_LR model gave the best performance as the overall accuracy was 0.86 for training and 0.82 for validation datasets. The prediction rate curve shows similar results. The correlation analysis shows that the landslide susceptibility maps produced by FR and FR_AHP are highly correlated (0.95). In contrast, the correlation between the maps produced by FR and FR_LR was relatively lower (0.85). It indicates that the three models are highly convergent with each other. This study’s integrated methods would be helpful for regional-scale landslide susceptibility mapping, and the landslide susceptibility maps produced would be useful for regional planning and disaster management of the CHA, Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document