scholarly journals Risk assessment of shanghai extreme flooding under the land use change scenario

2021 ◽  
Author(s):  
Xinmeng Shan ◽  
Jie Yin ◽  
Jun Wang
2021 ◽  
Author(s):  
Xinmeng Shan ◽  
Jie Yin ◽  
Jun Wang

Abstract Environmental changes have led to non-stationary flood risks in coastal cities. How to quantitatively characterize the future change trend and effectively adapt is a frontier scientific problem that needs to be solved urgently. To this end, this study uses the 2010 Shanghai land use data as the base and uses the GeoSOS-FLUS model to simulate future land use change scenarios (2030, 2050, and 2100). Based on the results of storm and flood numerical simulations, probabilistic risk, and other multidisciplinary methods, extreme storm and flood risks of various land uses (residential land, commercial and public service land, industrial land, transportation land, agricultural land, and other land) in Shanghai are analyzed and 4 adaptation strategies to deal with extreme flooding have been developed. The research results show that: 1) Under the two emission scenarios, residential, commercial and public service, and industrial land have the highest exposure assets. Under the RCP8.5 scenario, the exposure of assets in 2100, 2050, and 2030 will be 1.7 times, 1.5 times, and 1.3 times that in 2010 for 1/1000-year, respectively; the losses will be 2.7 times, 2.0 times, and 1.8 times that in 2010, respectively. 2) The spatial pattern of loss, which forms the scattered distribution of 1/10-year, is mainly distributed on both sides of the Huangpu River. For 1/1000-year, which is mainly gradually showed a strip distribution, continuous distribution of the city center, and the Qingpu-Songjiang depression in the southwest are high-risk areas for storm floods. 3) The risks are mainly distributed in the city center, the lower reaches of the Huangpu River, the northern shore of Hangzhou Bay, the Qingpu-Songjiang depression in the southwest, and Chongming Island (southwest and northeast). Our work can provide decision-making basis for risk-sensitive based urban planning, flood risk adaptation, and resilience building in Shanghai. The methodology can also provide a reference for risk assessment in other coastal areas.


2018 ◽  
Vol 38 (16) ◽  
Author(s):  
吕乐婷 LÜ Leting ◽  
张杰 ZHANG Jie ◽  
孙才志 SUN Caizhi ◽  
王晓蕊 WANG Xiaorui ◽  
郑德凤 ZHENG Defeng

2014 ◽  
Vol 14 (2) ◽  
pp. 1011-1024 ◽  
Author(s):  
O. J. Squire ◽  
A. T. Archibald ◽  
N. L. Abraham ◽  
D. J. Beerling ◽  
C. N. Hewitt ◽  
...  

Abstract. Over the 21st century, changes in CO2 levels, climate and land use are expected to alter the global distribution of vegetation, leading to changes in trace gas emissions from plants, including, importantly, the emissions of isoprene. This, combined with changes in anthropogenic emissions, has the potential to impact tropospheric ozone levels, which above a certain level are harmful to animals and vegetation. In this study we use a biogenic emissions model following the empirical parameterisation of the MEGAN model, with vegetation distributions calculated by the Sheffield Dynamic Global Vegetation Model (SDGVM) to explore a range of potential future (2095) changes in isoprene emissions caused by changes in climate (including natural land use changes), land use, and the inhibition of isoprene emissions by CO2. From the present-day (2000) value of 467 Tg C yr−1, we find that the combined impact of these factors could cause a net decrease in isoprene emissions of 259 Tg C yr−1 (55%) with individual contributions of +78 Tg C yr−1 (climate change), −190 Tg C yr−1 (land use) and −147 Tg C yr−1 (CO2 inhibition). Using these isoprene emissions and changes in anthropogenic emissions, a series of integrations is conducted with the UM-UKCA chemistry-climate model with the aim of examining changes in ozone over the 21st century. Globally, all combined future changes cause a decrease in the tropospheric ozone burden of 27 Tg (7%) from 379 Tg in the present-day. At the surface, decreases in ozone of 6–10 ppb are calculated over the oceans and developed northern hemispheric regions, due to reduced NOx transport by PAN and reductions in NOx emissions in these areas respectively. Increases of 4–6 ppb are calculated in the continental tropics due to cropland expansion in these regions, increased CO2 inhibition of isoprene emissions, and higher temperatures due to climate change. These effects outweigh the decreases in tropical ozone caused by increased tropical isoprene emissions with climate change. Our land use change scenario consists of cropland expansion, which is most pronounced in the tropics. The tropics are also where land use change causes the greatest increases in ozone. As such there is potential for increased crop exposure to harmful levels of ozone. However, we find that these ozone increases are still not large enough to raise ozone to such damaging levels.


CATENA ◽  
2011 ◽  
Vol 86 (1) ◽  
pp. 36-48 ◽  
Author(s):  
C. Ronfort ◽  
V. Souchère ◽  
P. Martin ◽  
C. Sebillotte ◽  
M.S. Castellazzi ◽  
...  

2012 ◽  
Vol 7 (5) ◽  
pp. 573-581 ◽  
Author(s):  
Subashisa Dutta ◽  
◽  
Shyamal Ghosh

Being the highest specific discharge river in the world, the Brahmaputra has a large floodplain area of 700 km in length in its middle reaches falling in the high flood vulnerability category. Floods generated in upland Himalayan catchments are mainly controlled by land use and land cover, storm characteristics, and vegetation dynamics. Floods propagate through a floodplain region consisting of wetlands, paddy agriculture, and wide braided river reaches with natural constraint points (nodals) that make the reaches more vulnerable to flood hazards. In this study, a macroscale distributed hydrological model was used to obtain the flood characteristics of the reaches. A hydrological model with spatially distributed input parameters and meteorological data was simulated at (1 km × 1 km) spatial grids to estimate flood hydrographs at the main river and itsmajor tributaries. Aftermodel validation, “best guess” land use change scenarios were used to estimate potential changes in flood characteristics. Results show that at the middle reaches of the Brahmaputra, peak discharge increases by a maximum of 9% for land use change scenarios. The same model with bias-corrected climatological data from a regional climate model (RCM) simulation (PRECIS) was used to obtain future changes in flood generation and its propagation through the basin in the projected climatological scenario. Changes in flood characteristics with reference to the baseline period show that the average duration of flood waves will increase from 15.2 days in the baseline period (1961-1990) to 19.3 days in the future (2071-2100). Peak discharge will increase by an average of 21% in the future in the projected climate change scenario. After statistics on changes of flood characteristics in the projected climate change scenario (2071-2100) were obtained, a 2-dimensional hydrodynamic model was used to obtain flood inundation and velocity distribution on the floodplain. Distribution of velocity and inundation depth was spatially analyzed to obtain flood hazard zones in the projected climate change scenario. Results show that spatial variation in flood hazard zones will be significantly altered in the projected climate change scenario compared to land use/land cover changes.


Sign in / Sign up

Export Citation Format

Share Document