dianchi lake
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 69)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 132 ◽  
pp. 108317
Author(s):  
Qing Chen ◽  
Jian Zhao ◽  
Qiang Gao ◽  
HaiXia Liu ◽  
XueMei Han

2021 ◽  
Author(s):  
Xiaohua Ma ◽  
Hao Yang ◽  
Changchun Huang ◽  
Tao Huang ◽  
Shuaidong Li

Abstract In this study, the sedimentary records, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in Dianchi Lake were analyzed. The concentration ranges of ΣPAH16 in the sediments of Dianchi Lake were 368–990 ng/g, with an average value of 572 ng/g, peaking in 1988. Economic development and rapid population growth, as well as the rapid growth of coal consumption, have a greater impact on the HMW PAHs than on the LMW PAHs in the sedimentary environment. The results of the diagnostic ratios and PCA model show that the main sources of PAHs were coal and biomass combustion, as well as fossil fuel combustion sources in individual years. The risk assessment results showed that the PAH concentrations in the sediment were within a safe range. In the past 100 years of sediment pore water, except for Phe, which reached chronic toxic pollution levels in some years, other 2-3 ring LMW PAHs have been within a safe range. With the development of industrialization and urbanization, the burning of fossil fuels such as coal and petroleum has increased, and some of the 4-6 ring HMW PAHs have reached chronic toxicity or even acute toxicity in the sediment pore water.


2021 ◽  
Vol 130 ◽  
pp. 108102
Author(s):  
Ruibo Wang ◽  
Yang Bai ◽  
Juha M. Alatalo ◽  
Zhangqian Yang ◽  
Zongbao Yang ◽  
...  

2021 ◽  
Vol 13 (19) ◽  
pp. 3970
Author(s):  
Huan Zhao ◽  
Junsheng Li ◽  
Xiang Yan ◽  
Shengzhong Fang ◽  
Yichen Du ◽  
...  

Some lakes in China have undergone serious eutrophication, with cyanobacterial blooms occurring frequently. Dynamic monitoring of cyanobacterial blooms is important. At present, the traditional lake-survey-based cyanobacterial bloom monitoring is spatiotemporally limited and requires considerable human and material resources. Although satellite remote sensing can rapidly monitor large-scale cyanobacterial blooms, clouds and other factors often mean that effective images cannot be obtained. It is also difficult to use this method to dynamically monitor and manage aquatic environments and provide early warnings of cyanobacterial blooms in lakes and reservoirs. In contrast, ground-based remote sensing can operate under cloud cover and thus act as a new technical method to dynamically monitor cyanobacterial blooms. In this study, ground-based remote-sensing technology was applied to multitemporal, multidirectional, and multiscene monitoring of cyanobacterial blooms in Dianchi Lake via an area array multispectral camera mounted on a rotatable cloud platform at a fixed station. Results indicate that ground-based imaging remote sensing can accurately reflect the spatiotemporal distribution characteristics of cyanobacterial blooms and provide timely and accurate data for salvage treatment and early warnings. Thus, ground-based multispectral remote-sensing data can operationalize the dynamic monitoring of cyanobacterial blooms. The methods and results from this study can provide references for monitoring such blooms in other lakes.


2021 ◽  
Author(s):  
Tao Huang ◽  
Yang Luo ◽  
Quanliang Jiang ◽  
Zhigang Zhang ◽  
Hao Yang ◽  
...  

Abstract The concentration and sources of organic nitrogen (ON) in lake sediment significantly affect the lake nitrogen cycle. However, the influencing factors and contributors to the ON accumulation rate (ONAR) are unclear. In this study, tree sediment cores from northern, eastern, and southern Dianchi Lake (DC-N, DC-E, and DC-S, respectively), sampled in July 2014, were used to study the effects of autochthonous and allochthonous sources on ON. The results showed that ON and the ONAR increased 2.4–5.1 and 2.6–4.8 times, respectively, from1900 to2000, especially since the 1980s, at which point algal blooms occurred more frequently. The ON contents decreased in the order: DC-S > DC-N > DC-E, whereas the ONAR values followed the order: DC-N > DC-S > DC-E, suggesting that the ONAR was influenced by ON content as well as depositional environmental conditions. The total concentrations of n-alkanes (n-C12 to n-C34) ranged from 4719.4 ng g− 1 to 61,959.6 ng g− 1 in the three sediment cores, each of which exhibited different n-alkanes characteristic variation with vertical depth. The sources of ON were mainly allochthonous (soil erosion and terrestrial plants) and autochthonous (algal and aquatic plants) in DC-S and DC-N, respectively, whereas they were primarily mixed planktonic and terrestrial sources in DC-E. Using the stochastic impacts by regression on population, affluence, and technology model to further examine the ONAR values revealed that 1% increase in temperature and nitrogen fertilizer can increase the ONAR by 73.8–86.2% and 73.2–151.3% in all sediments, especially in DC-S and DC-E. However, a 1% increase in construction area could reduce the ONAR by 2.4–14.2%, especially in DC-N. Overall, climate change and human activities determine the spatial and temporal ONAR variation in Dianchi Lake.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hu Lin ◽  
Gan Shu ◽  
Yuan Xiping ◽  
Li Yan ◽  
Chen Guokun ◽  
...  

Remote sensing monitoring of aquatic vegetation is critical to the water quality evaluation of plateau lakes. To obtain a clear understanding of the water environment status of Dianchi Lake, a GF-5 hyperspectral characteristics-based optimal NDVI approach was employed to quantify the aquatic vegetation cover and analyze water quality. By characteristic bands recognition, the optimal NDVI was obtained; the spatial distribution of aquatic plants and water quality in Dianchi Lake were then analyzed. Results showed the following: (1) For Caohai, the optimal NDVI value was calculated by B86 in the red band range and B151 in the near-infrared band range, which achieve the best spectral response. For Waihai, the respective bands were B86 in the red band range and B99 in the near-infrared band range. (2) We also found significant regional differences in aquatic plants distribution for the study area. Caohai was dominated by aquatic plants and high-quality water areas only occurred in the northern tip. While the situation for Waihai was much optimistic, areas with poor water quality were mainly found in the north and south parts. Water quality also showed a descending trend from the lakeside zone to the lake center. (3) By comparing to previous studies, we concluded that policy interventions and water protection measures carried out by the government during the past years are extremely effective. The optimal NDVI method provides a reliable evaluation and is potentially transferable to other plateau lake areas as a robust approach for the rapid assessment of water quality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiang-shu Ma ◽  
Leng Liu ◽  
Yi-chuan Fang ◽  
Xiao-long Sun

AbstractThis study is to determine the spatial distribution characteristics of Cu and Zn adsorption on the sediments of the estuary of Dianchi Lake, as well as the composite adsorption law of Cu and Zn on combinations of sediment organic matter, metal oxides, and organic–inorganic composites. The relationship between the adsorption contribution of each component of the substance. A static adsorption experiment was applied to the sediments in the estuary of Dianchi Lake. The relationship between adsorption capacity and sediment composition was analyzed through correlation analysis and redundant analysis. The results show that along the direction of the river flow and the vertical depth, the adsorption capacity presents a relatively obvious spatial distribution law; the change trend of sediment component content is not the same as the change trend of Cu and Zn adsorption capacity. The change trend of the sediment component content is not the same as the change trend of the adsorption amount of Cu and Zn, and the compound effect between the components affects the adsorption amount. The adsorption of Cu by the four groups of sediments after different treatments is more in line with the Freundlich isotherm adsorption model; When adsorbing Zn, the untreated and removed organic matter and iron-aluminum oxide group are in good agreement with the Freundlich model, while the organic matter-removed group and the iron-aluminum oxide removal group are more consistent with the Langmuir isotherm adsorption model; The adsorption contribution rate of organic–inorganic composites in sediments is not a simple addition of organic matter and iron-aluminum oxides, but a more complex quantitative relationship.


Sign in / Sign up

Export Citation Format

Share Document