scholarly journals Water yield, nitrogen and sediment retentions in Northern Japan (Teshio river watershed): land use change scenario analysis

2014 ◽  
Vol 21 (1) ◽  
pp. 119-133 ◽  
Author(s):  
Min Fan ◽  
Hideaki Shibata
2017 ◽  
Vol 4 (2) ◽  
pp. 109
Author(s):  
Kunihiko Yoshino ◽  
Yudi Setiawan ◽  
Eikichi Shima

In this study, time series datasets of MODIS EVI (Enhanced Vegetation Index) data from 2002 and 2011 in the Brantas River watershed located in eastern Java, Indonesia were analyzed and classified to make ten land use maps for each year, in order to support watershed land use planning which takes into account local land use and trends in land use change. These land use maps with eight types of main land use categories were examined. During the 10 years period, forested area has expanded, while upland, paddy rice field, mixed garden and plantation have decreased. One of the reasons for this land use change is ascribed to tree planting under the joint forest management system by local people and the state forest corporation.


2021 ◽  
Author(s):  
Shilei Peng ◽  
Chunying Wang ◽  
Sadao Eguchi ◽  
Kanta Kuramochi ◽  
Masato Igura ◽  
...  

<p>Hydrological processes at basin scale are driven by climate and land-use changes. Hiso River watershed (HRW) is within a radiocesium contaminated area caused by the disaster in Fukushima Daiichi nuclear power plant (FDNPP). It’s urgently needed to make evaluations on how changes of climate and land-use bring impacts on hydrological processes, which control pollutants transport in watershed. This study applied a combination method of Statistical DownScaling Model (SDSM) and Soil and Water Assessment Tool (SWAT) to generate future climatic and hydrologic variables. Future climate data was obtained from three Representative Concentration Pathway (RCP2.6, 4.5 and 8.5) scenarios of a single General Circulation Models (GCMs) in three future periods of 2030s, 2060s and 2090s (2010-2039, 2040-2069, 2070-2099), with a baseline period (1980-2009). Furthermore, according to land-use change in HRW during 2013-2017, three land-use change scenarios under the three future climate scenarios were established. Results suggested that SDSM showed good capabilities in capturing daily maximum/minimum temperature and precipitation. The SWAT model presented good performances in simulating monthly and yearly streamflow. Results also suggested projected higher temperatures and lower rainfall led to decreased annual water yield and evapotranspiration (ET). The annual water yield and ET decreased in most seasons while had a slight increase in spring. RCP8.5 scenario always generated larger magnitudes for climatic variables and water balance components compared with other climate scenarios. Land-use changes had strong impact on surface runoff and groundwater flow. These findings could provide reference for decontamination and revitalization policy-making under complicated land use and climate change conditions.</p>


2021 ◽  
Vol 13 (2) ◽  
pp. 716
Author(s):  
Mengzhu Liu ◽  
Leilei Min ◽  
Jingjing Zhao ◽  
Yanjun Shen ◽  
Hongwei Pei ◽  
...  

Land use change is an important scientific issue recognized for its potential to alter ecosystem services (ESs), especially water-related ecosystem services (WRESs). Using the integrated valuation of ecosystem services and trade-offs (InVEST) model, this study quantified and mapped spatiotemporal variations in land use and corresponding WRESs in the Bashang area of Hebei Province, China (BAHP) to investigate how land use change impacted WRESs by means of scenario analysis, especially, in which a new evaluation indicator, average ecology effect (AEE) was proposed and well applied. The results indicated that woodland expansion (+602.61 km2) and grassland shrinkage (−500.57 km2) dominated the land use change in the BAHP in 2000–2018, which altered local WRESs, including the moderate declines in water purification and water yield, as well as a significant enhancement in soil conservation. In scenario analysis, compared to baseline levels, riparian woodland buffer and planting trees scenarios slightly decreased water yield but strengthened water purification and soil conservation; reclaiming wasteland and integrated development scenarios significantly enhanced soil conservation but lowered water yield and water purification; fertilizer reduction scenario effectively mitigated water deterioration. According to AEE, the riparian woodland buffer (RWB) scenario performed greater than the planting trees (PT) scenario on variations of WRESs per unit area, which differed completely from the results based on total variations. Overall, a multiple-scale indicator for a comprehensive evaluation of ESs should receive more attention.


Author(s):  
Qinglong Ding ◽  
Yang Chen ◽  
Lingtong Bu ◽  
Yanmei Ye

The past decades were witnessing unprecedented habitat degradation across the globe. It thus is of great significance to investigate the impacts of land use change on habitat quality in the context of rapid urbanization, particularly in developing countries. However, rare studies were conducted to predict the spatiotemporal distribution of habitat quality under multiple future land use scenarios. In this paper, we established a framework by coupling the future land use simulation (FLUS) model with the Intergrated Valuation of Environmental Services and Tradeoffs (InVEST) model. We then analyzed the habitat quality change in Dongying City in 2030 under four scenarios: business as usual (BAU), fast cultivated land expansion scenario (FCLE), ecological security scenario (ES) and sustainable development scenario (SD). We found that the land use change in Dongying City, driven by urbanization and agricultural reclamation, was mainly characterized by the transfer of cultivated land, construction land and unused land; the area of unused land was significantly reduced. While the habitat quality in Dongying City showed a degradative trend from 2009 to 2017, it will be improved from 2017 to 2030 under four scenarios. The high-quality habitat will be mainly distributed in the Yellow River Estuary and coastal areas, and the areas with low-quality habitat will be concentrated in the central and southern regions. Multi-scenario analysis shows that the SD will have the highest habitat quality, while the BAU scenario will have the lowest. It is interesting that the ES scenario fails to have the highest capacity to protect habitat quality, which may be related to the excessive saline alkali land. Appropriate reclamation of the unused land is conducive to cultivated land protection and food security, but also improving the habitat quality and giving play to the versatility and multidimensional value of the agricultural landscape. This shows that the SD of comprehensive coordination of urban development, agricultural development and ecological protection is an effective way to maintain the habitat quality and biodiversity.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 616
Author(s):  
Jie Gao ◽  
Xuguang Tang ◽  
Shiqiu Lin ◽  
Hongyan Bian

The ecosystem services (ESs) provided by mountain regions can bring about benefits to people living in and around the mountains. Ecosystems in mountain areas are fragile and sensitive to anthropogenic disturbance. Understanding the effect of land use change on ESs and their relationships can lead to sustainable land use management in mountain regions with complex topography. Chongqing, as a typical mountain region, was selected as the site of this research. The long-term impacts of land use change on four key ESs (i.e., water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ)) and their relationships were assessed from the past to the future (at five-year intervals, 1995–2050). Three future scenarios were constructed to represent the ecological restoration policy and different socioeconomic developments. From 1995 to 2015, WY and SC experienced overall increases. CS and HQ increased slightly at first and then decreased significantly. A scenario analysis suggested that, if the urban area continues to increase at low altitudes, by 2050, CS and HQ are predicted to decrease moderately. However, great improvements in SC, HQ, and CS are expected to be achieved by the middle of the century if the government continues to make efforts towards vegetation restoration on the steep slopes.


2021 ◽  
Vol 933 (1) ◽  
pp. 012010
Author(s):  
S A Nurhayati ◽  
M Marselina ◽  
A Sabar

Abstract Increasing population growth is one of the impacts of the growth of a city or district in an area. This also happened in the Cimahi watershed area. As the population grows, so does the need for land which increases the land-use change in the Cimahi watershed. Land-use changes will affect the surrounding environment and one of them is the river, especially river water quality. As a watershed area, there is one main river that is the source of life as well as the Cimahi watershed, whose main river is the Cimahi River. The purpose of this study was calculated the relationship between land-use change in the Cimahi watershed and the water quality parameters of the Cimahi River. The correlation between the two was calculated using Pearson correlation. Water quality parameters can be seen based on BOD and DO values. BOD and DO values are the opposite because good water quality has high DO values and low BOD values. The correlation between land-use change and BOD was 0.328 is in the area of settlements area. In contrast, to DO values, an increase in settlements/industrial zones will further reduce DO values so that both have a negative correlation, which is indicated by a value of -0,535. The correlation between settlements with pH and temperature values is 0.664 and 0.812. While the correlation between settlements with TSS and TDS values are 0.333 and 0.529, respectively. In this study, it can be seen that there is a relationship between the decline in water quality and changes in land use.


Sign in / Sign up

Export Citation Format

Share Document