Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique

2011 ◽  
Vol 69 (1-2) ◽  
pp. 247-261 ◽  
Author(s):  
Mohammad Pourmahmood Aghababa
2020 ◽  
pp. 107754632092526
Author(s):  
Amir Razzaghian ◽  
Reihaneh Kardehi Moghaddam ◽  
Naser Pariz

This study investigates a novel fractional-order nonsingular terminal sliding mode controller via a finite-time disturbance observer for a class of mismatched uncertain nonlinear systems. For this purpose, a finite-time disturbance observer–based fractional-order nonsingular terminal sliding surface is proposed, and the corresponding control law is designed using the Lyapunov stability theory to satisfy the sliding condition in finite time. The proposed fractional-order nonsingular terminal sliding mode control based on a finite-time disturbance observer exhibits better control performance; guarantees finite-time convergence, robust stability of the closed-loop system, and mismatched disturbance rejection; and alleviates the chattering problem. Finally, the effectiveness of the proposed fractional-order robust controller is illustrated via simulation results of both the numerical and application examples which are compared with the fractional-order nonsingular terminal sliding mode controller, sliding mode controller based on a disturbance observer, and integral sliding mode controller methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Yaoyao Wang ◽  
Jiawang Chen ◽  
Linyi Gu

For the 4-DOF (degrees of freedom) trajectory tracking control problem of underwater remotely operated vehicles (ROVs) in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC) technique is introduced in light of the equivalent output injection sliding mode observer (SMO) and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time.


2016 ◽  
Vol 40 (3) ◽  
pp. 853-860 ◽  
Author(s):  
Xuan-Toa Tran ◽  
Hee-Jun Kang

This paper introduces an adaptive control method for finite-time modified function projective lag synchronization of uncertain hyperchaotic systems. Based upon novel nonsingular terminal sliding mode surfaces and the adaptive super-twisting algorithm, a controller is proposed to provide robustness, high precision and fast and finite-time modified function projective lag synchronization without the knowledge of the upper bound of uncertainties and unknown external disturbances. In addition, chattering is significantly attenuated due to the inherited continuity of the proposed controller. The global stability and finite-time convergence are rigorously proven. Numerical simulation is presented to demonstrate the effectiveness and feasibility of the proposed strategy and to verify the theoretical results.


Author(s):  
Yaoyao Wang ◽  
Bai Chen ◽  
Hongtao Wu

For the multi-degrees of freedom control problem of underwater hydraulic manipulators with non-ignorable valve deadband and strong lumped nonlinearities and uncertainties, a practical continuous fractional-order nonsingular terminal sliding mode control design together with a deadband compensator is presented and studied. The presented method contains three parts a time delay estimation utilized to nearly estimate and compensate the extremely complicated system dynamics, a continuous fractional-order nonsingular terminal sliding mode used to ensure high control performance against the strong lumped nonlinearities and uncertainties, and a valve deadband compensator used to compensate for the non-ignorable valve deadband. The proposed method is model-free thanks to the time delay estimation, and can ensure satisfactory control performance thanks to the continuous fractional-order nonsingular terminal sliding mode and deadband compensator. Stability of the closed-loop control system including the deadband compensator is proved rigorously. Finally, practical 2-degrees of freedom experiments are performed, and corresponding results effectively demonstrate the superiorities of the newly presented controller with deadband compensator.


Sign in / Sign up

Export Citation Format

Share Document