A traffic flow model considering influence of car-following and its echo characteristics

2017 ◽  
Vol 89 (2) ◽  
pp. 1099-1109 ◽  
Author(s):  
Yongsheng Qian ◽  
Junwei Zeng ◽  
Neng Wang ◽  
Jinlong Zhang ◽  
Bingbing Wang
2012 ◽  
Vol 178-181 ◽  
pp. 2717-2720
Author(s):  
Man Xian Tuo

An extended traffic flow model is proposed by introducing the multiple information of preceding cars. The linear stability condition of the extended model is obtained, which shows that the stability of traffic flow is improved by considering the interaction of preceding cars to the following car. Numerical simulation shows that the traffic jams are suppressed efficiently by taking into account the multiple information of the preceding cars.


2021 ◽  
Author(s):  
Cong Zhai ◽  
Weitiao Wu

Abstract Uphill and downhill roads are prevalent in mountainous areas and freeways. Despite the advancement of vehicle-to-vehicle (V2V) communication technology, the driving field of vision is still largely limited under such a complex road environment, which hinders the sensors accurately perceiving the speed of the front vehicle. As such, a fundamental question for autonomous traffic management is how to control traffic flow associated with the velocity uncertainty of preceding vehicles? This paper seeks to develop a controlling framework for corporative car following control under such complex road environment. To this end, we first propose a traffic flow model accounting for the uncertainty effect of preceding vehicles velocity on gradient road. We further design a new self-delayed feedback controller based on the velocity and headway difference between the current time step and historical time step, in an aim to enhance the robustness of traffic flow. The sufficient condition where traffic jam does not occur is derived from the perspective of the frequency domain via Hurwitz criteria H∞ and norm of transfer functions. The bode diagram reveals that the robustness of closed-loop traffic flow model has been significantly enhanced. We also conduct simulations to verify the theoretical analysis.


2010 ◽  
Vol 13 (2) ◽  
pp. 279-303 ◽  
Author(s):  
Marte Godvik ◽  
◽  
Harald Hanche-Olsen

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Lidong Zhang ◽  
Wenxing Zhu ◽  
Mengmeng Zhang ◽  
Cuijiao Chen

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3425
Author(s):  
Huanping Li ◽  
Jian Wang ◽  
Guopeng Bai ◽  
Xiaowei Hu

In order to explore the changes that autonomous vehicles would bring to the current traffic system, we analyze the car-following behavior of different traffic scenarios based on an anti-collision theory and establish a traffic flow model with an arbitrary proportion (p) of autonomous vehicles. Using calculus and difference methods, a speed transformation model is established which could make the autonomous/human-driven vehicles maintain synchronized speed changes. Based on multi-hydrodynamic theory, a mixed traffic flow model capable of numerical calculation is established to predict the changes in traffic flow under different proportions of autonomous vehicles, then obtain the redistribution characteristics of traffic flow. Results show that the reaction time of autonomous vehicles has a decisive influence on traffic capacity; the q-k curve for mixed human/autonomous traffic remains in the region between the q-k curves for 100% human and 100% autonomous traffic; the participation of autonomous vehicles won’t bring essential changes to road traffic parameters; the speed-following transformation model minimizes the safety distance and provides a reference for the bottom program design of autonomous vehicles. In general, the research could not only optimize the stability of transportation system operation but also save road resources.


2021 ◽  
Vol 94 ◽  
pp. 369-387
Author(s):  
Weilin Ren ◽  
Rongjun Cheng ◽  
Hongxia Ge

Sign in / Sign up

Export Citation Format

Share Document