scholarly journals Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3425
Author(s):  
Huanping Li ◽  
Jian Wang ◽  
Guopeng Bai ◽  
Xiaowei Hu

In order to explore the changes that autonomous vehicles would bring to the current traffic system, we analyze the car-following behavior of different traffic scenarios based on an anti-collision theory and establish a traffic flow model with an arbitrary proportion (p) of autonomous vehicles. Using calculus and difference methods, a speed transformation model is established which could make the autonomous/human-driven vehicles maintain synchronized speed changes. Based on multi-hydrodynamic theory, a mixed traffic flow model capable of numerical calculation is established to predict the changes in traffic flow under different proportions of autonomous vehicles, then obtain the redistribution characteristics of traffic flow. Results show that the reaction time of autonomous vehicles has a decisive influence on traffic capacity; the q-k curve for mixed human/autonomous traffic remains in the region between the q-k curves for 100% human and 100% autonomous traffic; the participation of autonomous vehicles won’t bring essential changes to road traffic parameters; the speed-following transformation model minimizes the safety distance and provides a reference for the bottom program design of autonomous vehicles. In general, the research could not only optimize the stability of transportation system operation but also save road resources.

2012 ◽  
Vol 178-181 ◽  
pp. 2717-2720
Author(s):  
Man Xian Tuo

An extended traffic flow model is proposed by introducing the multiple information of preceding cars. The linear stability condition of the extended model is obtained, which shows that the stability of traffic flow is improved by considering the interaction of preceding cars to the following car. Numerical simulation shows that the traffic jams are suppressed efficiently by taking into account the multiple information of the preceding cars.


2011 ◽  
Vol 97-98 ◽  
pp. 877-882 ◽  
Author(s):  
Wen Xing Zhu ◽  
Rui Ling Yu ◽  
Zhi Ping Jia

In this paper we investigated the stability of the traffic flow on a single lane gradient (uphill/downhill) highway. The linear stability theory was used to analyze the model and get the stability conditions. The theoretical result shows that the slope of the gradient has an influence on the stability of traffic flow. Simulations are carried out to check the slope effect of the traffic flow model. Numerical result is in good agreement with the real traffic situations.


2015 ◽  
Vol 26 (11) ◽  
pp. 1550121 ◽  
Author(s):  
Jin-Liang Cao ◽  
Zhon-Ke Shi

Due to the existence of curved roads in real traffic situation, a novel lattice traffic flow model on a curved road is proposed by taking the effect of friction coefficient and radius into account. The stability condition is obtained by using linear stability theory. The result shows that the traffic flow becomes stable with the decrease of friction coefficient and radius of the curved road. Using nonlinear analysis method, the Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equation are derived to describe soliton waves and the kink–antikink waves in the meta-stable region and unstable region, respectively. Numerical simulations are carried out and the results are consistent with the theoretical results.


2002 ◽  
Vol 1802 (1) ◽  
pp. 214-224
Author(s):  
Huajing Shi ◽  
Athanasios K. Ziliaskopoulos

A microscopic traffic flow model based on the constant-time-headway policy and McRuer’s man-machine crossover model was designed. Automatic control theory concepts were employed in the model formulation. The constant-time-headway policy was used to generate the command model of a human driver’s decision for vehicle acceleration or deceleration. This command is the input signal fed into the driver-vehicle dynamics suggested by the crossover model. The proposed model was mathematically formulated, designed, implemented, and numerically simulated. The stability properties and validity of the proposed model were analyzed on the basis of the simulation results. It was demonstrated that the proposed model can reproduce well-known traffic phenomena such as shock waves, intersection starting and stopping waves, and loop structures of flow-density and speed-density plots.


2016 ◽  
Vol 27 (03) ◽  
pp. 1650034 ◽  
Author(s):  
Zhipeng Li ◽  
Chenjie Zhong ◽  
Lizhu Chen ◽  
Shangzhi Xu ◽  
Yeqing Qian

In this paper, the original lattice hydrodynamic model of traffic flow is extended to take into account the traffic current cooperation among three consecutive sites. The basic idea of the new consideration is that the cooperative traffic current of the considered site is determined by the traffic currents of the site itself, the immediately preceding site and the immediately following one. The stability criterion of the extended model is obtained by applying the linear stability analysis. The result reveals the traffic current cooperation of the immediately preceding site is positive correlation with the stability of traffic system, while negative correlation is found between the traffic stability and the traffic current cooperation of the nearest follow site. To describe the phase transition, the modified KdV equation near the critical point is derived by using the reductive perturbation method, with obtaining the dependence of the propagation kink solution for traffic jams on the traffic current cooperation among three consecutive sites. The direct numerical are conducted to verify the results of theoretical analysis, and explore the effects of the traffic current cooperation on the traffic flux of the vehicle flow system.


2017 ◽  
Vol 31 (09) ◽  
pp. 1750090 ◽  
Author(s):  
Yongfu Li ◽  
Wenbo Chen ◽  
Srinivas Peeta ◽  
Xiaozheng He ◽  
Taixiong Zheng ◽  
...  

This study proposes a new microscopic traffic flow model based on the spring-mass system theory. In particular, considering the similarity between the acceleration or deceleration behavior in traffic flow and the scaling properties of a spring, a car-following (CF) model is proposed based on the fundamental physical law of the spring-mass system. Stability of the proposed model is analyzed using the perturbation method to obtain the stability condition. Numerical experiments are performed through simulation. The results demonstrate the proposed model can capture the characteristic of propagation backwards of disturbance in traffic flow. In addition, the findings of this study provide insights in modeling traffic flow from the mechanical system theory perspective.


2014 ◽  
Vol 33 ◽  
pp. 25-32 ◽  
Author(s):  
MH Kabir ◽  
LS Andallah

This paper performs the numerical solution of a macroscopic multilane traffic flow model based on a linear density-velocity relationship. A multilane traffic flow is modeled by a system of nonlinear partial differential equation appended with initial and boundary conditions reads as an initial boundary value problem (IBVP). We present numerical simulation of the IBVP by a finite difference scheme named Lax-Friedrichs scheme and report on the stability and efficiency of the scheme by performing numerical experiments. The computed result satisfies some well known qualitative features of the solution. GANIT J. Bangladesh Math. Soc. Vol. 33 (2013) 25-32 DOI: http://dx.doi.org/10.3329/ganit.v33i0.17653


1997 ◽  
Vol 1588 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Hongjun Zhang ◽  
Stephen G. Ritchie ◽  
Zhen-Ping Lo

Traffic flow on freeways is a complex process that often is described by a set of highly nonlinear, dynamic equations in the form of a macroscopic traffic flow model. However, some of the existing macroscopic models have been found to exhibit instabilities in their behavior and often do not track real traffic data correctly. On the other hand, microscopic traffic flow models can yield more detailed and accurate representations of traffic flow but are computationally intensive and typically not suitable for real-time implementation. Nevertheless, such implementations are likely to be necessary for development and application of advanced traffic control concepts in intelligent vehicle-highway systems. The development of a multilayer feed-forward artificial neural network model to address the freeway traffic system identification problem is presented. The solution of this problem is viewed as an essential element of an effort to build an improved freeway traffic flow model for the purpose of developing real-time predictive control strategies for dynamic traffic systems. To study the initial feasibility of the proposed neural network approach for traffic system identification, a three-layer feed-forward neural network model has been developed to emulate an improved version of a well-known higher-order continuum traffic model. Simulation results show that the neural network model can capture the traffic dynamics of this model quite closely. Future research will attempt to attain similar levels of performance using real traffic data.


Sign in / Sign up

Export Citation Format

Share Document