Relaxation oscillation and canard explosion in a slow–fast predator–prey model with Beddington–DeAngelis functional response

Author(s):  
Tapan Saha ◽  
Pallav Jyoti Pal ◽  
Malay Banerjee
2021 ◽  
pp. 1-28
Author(s):  
ANURAJ SINGH ◽  
PREETI DEOLIA

In this paper, we study a discrete-time predator–prey model with Holling type-III functional response and harvesting in both species. A detailed bifurcation analysis, depending on some parameter, reveals a rich bifurcation structure, including transcritical bifurcation, flip bifurcation and Neimark–Sacker bifurcation. However, some sufficient conditions to guarantee the global asymptotic stability of the trivial fixed point and unique positive fixed points are also given. The existence of chaos in the sense of Li–Yorke has been established for the discrete system. The extensive numerical simulations are given to support the analytical findings. The system exhibits flip bifurcation and Neimark–Sacker bifurcation followed by wide range of dense chaos. Further, the chaos occurred in the system can be controlled by choosing suitable value of prey harvesting.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xinhong Zhang ◽  
Qing Yang

<p style='text-indent:20px;'>In this paper, we consider a stochastic predator-prey model with general functional response, which is perturbed by nonlinear Lévy jumps. Firstly, We show that this model has a unique global positive solution with uniform boundedness of <inline-formula><tex-math id="M1">\begin{document}$ \theta\in(0,1] $\end{document}</tex-math></inline-formula>-th moment. Secondly, we obtain the threshold for extinction and exponential ergodicity of the one-dimensional Logistic system with nonlinear perturbations. Then based on the results of Logistic system, we introduce a new technique to study the ergodic stationary distribution for the stochastic predator-prey model with general functional response and nonlinear jump-diffusion, and derive the sufficient and almost necessary condition for extinction and ergodicity.</p>


2017 ◽  
Vol 10 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Wensheng Yang

The dynamical behaviors of a diffusive predator–prey model with Beddington–DeAngelis functional response and disease in the prey is considered in this work. By applying the comparison principle, linearized method, Lyapunov function and iterative method, we are able to achieve sufficient conditions of the permanence, the local stability and global stability of the boundary equilibria and the positive equilibrium, respectively. Our result complements and supplements some known ones.


Sign in / Sign up

Export Citation Format

Share Document