scholarly journals A new discovery on visual information dynamic changes from V1 to V2: corner encoding

Author(s):  
Haixin Zhong ◽  
Rubin Wang

AbstractThe information processing mechanisms of the visual nervous system remain to be unsolved scientific issues in neuroscience field, owing to a lack of unified and widely accepted theory for explanation. It has been well documented that approximately 80% of the rich and complicated perceptual information from the real world is transmitted to the visual cortex, and only a small fraction of visual information reaches the primary visual cortex (V1). This, nevertheless, does not affect our visual perception. Furthermore, how neurons in the secondary visual cortex (V2) encode such a small amount of visual information has yet to be addressed. To this end, the current paper established a visual network model for retina-lateral geniculate nucleus (LGN)-V1–V2 and quantitatively accounted for that response to the scarcity of visual information and encoding rules, based on the principle of neural mapping from V1 to V2. The results demonstrated that the visual information has a small degree of dynamic degradation when it is mapped from V1 to V2, during which there is a convolution calculation occurring. Therefore, visual information dynamic degradation mainly manifests itself along the pathway of the retina to V1, rather than V1 to V2. The slight changes in the visual information are attributable to the fact that the receptive fields (RFs) of V2 cannot further extract the image features. Meanwhile, despite the scarcity of visual information mapped from the retina, the RFs of V2 can still accurately respond to and encode “corner” information, due to the effects of synaptic plasticity, but the similar function does not exist in V1. This is a new discovery that has never been noticed before. To sum up, the coding of the “contour” feature (edge and corner) is achieved in the pathway of retina-LGN-V1–V2.

2021 ◽  
Author(s):  
Haixin Zhong ◽  
Rubin Wang

Abstract The information processing mechanisms of the visual nervous system remain to be unsolved scientific issues in neuroscience field, owing to a lack of unified and widely accepted theory for explanation. It has been well documented that approximately 80% of the rich and complicated perceptual information from the real world is transmitted to the visual cortex, only a small fraction of visual information reaches the V1 area. This, nevertheless, does not affect our visual perception. Furthermore, how neurons in V2 encode such a small amount of visual information has yet to be addressed. To this end, the current paper establishes a visual network model for retina-LGN-V1-V2 and quantitatively accounts for that response to the scarcity of visual information and encoding rules, based on the principle of neural mapping from V1 to V2. The results demonstrate that the visual information has a small degree of dynamic degradation when it is mapped from V1 to V2, during which there is a convolution calculation occurring. Therefore, visual information dynamic degradation mainly manifests itself along the pathway of the retina to V1, rather than V1 to V2. The slight changes in the visual information are attributable to the fact that the receptive fields (RFs) of V2 cannot further extract the image features. Meanwhile, despite the scarcity of visual information mapped from the retina, the RFs of V2 can still accurately respond to and encode “corner” information, due to the effects of synaptic plasticity, of which function is not existed in V1. This is a new discovery that has never been noticed before. To sum up, the coding of the “contour” feature (edge and corner) is achieved in the pathway of retina-LGN-V1-V2.


2018 ◽  
Author(s):  
Adam P. Morris ◽  
Bart Krekelberg

SummaryHumans and other primates rely on eye movements to explore visual scenes and to track moving objects. As a result, the image that is projected onto the retina – and propagated throughout the visual cortical hierarchy – is almost constantly changing and makes little sense without taking into account the momentary direction of gaze. How is this achieved in the visual system? Here we show that in primary visual cortex (V1), the earliest stage of cortical vision, neural representations carry an embedded “eye tracker” that signals the direction of gaze associated with each image. Using chronically implanted multi-electrode arrays, we recorded the activity of neurons in V1 during tasks requiring fast (exploratory) and slow (pursuit) eye movements. Neurons were stimulated with flickering, full-field luminance noise at all times. As in previous studies 1-4, we observed neurons that were sensitive to gaze direction during fixation, despite comparable stimulation of their receptive fields. We trained a decoder to translate neural activity into metric estimates of (stationary) gaze direction. This decoded signal not only tracked the eye accurately during fixation, but also during fast and slow eye movements, even though the decoder had not been exposed to data from these behavioural states. Moreover, this signal lagged the real eye by approximately the time it took for new visual information to travel from the retina to cortex. Using simulations, we show that this V1 eye position signal could be used to take into account the sensory consequences of eye movements and map the fleeting positions of objects on the retina onto their stable position in the world.


Author(s):  
Brian Rogers

‘The physiology and anatomy of the visual system’ describes what we have learned from neurophysiology and anatomy over the past eighty years and what this tells us about the meaning of the circuits involved in visual information processing. It explains how psychologists and physiologists use the terms ‘mechanism’ and ‘process’. For physiologists, a mechanism is linked to the actions of individual neurons, neural pathways, and the ways in which the neurons are connected up. For psychologists, the term is typically used to describe the processes the neural circuits may carry out. The human retina is described with explanations of lateral inhibition, receptive fields, and feature detectors as well as the visual cortex and different visual pathways.


2017 ◽  
Author(s):  
Marius Pachitariu ◽  
Maneesh Sahani

AbstractPopulations of neurons in primary visual cortex (V1) transform direct thalamic inputs into a cortical representation which acquires new spatio-temporal properties. One of these properties, motion selectivity, has not been strongly tied to putative neural mechanisms, and its origins remain poorly understood. Here we propose that motion selectivity is acquired through the recurrent mechanisms of a network of strongly connected neurons. We first show that a bank of V1 spatiotemporal receptive fields can be generated accurately by a network which receives only instantaneous inputs from the retina. The temporal structure of the receptive fields is generated by the long timescale dynamics associated with the high magnitude eigenvalues of the recurrent connectivity matrix. When these eigenvalues have complex parts, they generate receptive fields that are inseparable in time and space, such as those tuned to motion direction. We also show that the recurrent connectivity patterns can be learnt directly from the statistics of natural movies using a temporally-asymmetric Hebbian learning rule. Probed with drifting grating stimuli and moving bars, neurons in the model show patterns of responses analogous to those of direction-selective simple cells in primary visual cortex. These computations are enabled by a specific pattern of recurrent connections, that can be tested by combining connectome reconstructions with functional recordings.*Author summaryDynamic visual scenes provide our eyes with enormous quantities of visual information, particularly when the visual scene changes rapidly. Even at modest moving speeds, individual small objects quickly change their location causing single points in the scene to change their luminance equally fast. Furthermore, our own movements through the world add to the velocities of objects relative to our retinas, further increasing the speed at which visual inputs change. How can a biological system process efficiently such vast amounts of information, while keeping track of objects in the scene? Here we formulate and analyze a solution that is enabled by the temporal dynamics of networks of neurons.


1975 ◽  
Vol 38 (4) ◽  
pp. 735-750 ◽  
Author(s):  
B. Dreher ◽  
L. J. Cottee

1. Receptive-field properties of single neurons in cat's cortical area 18 were studied before and after partial bilateral lesions of area 17. 2. The majority of cells recorded from animals with intact visual cortex exhibited orientation selectivity, directional selectivity, and could be independently activated through either eye. All cells responded well to moving targets and nearly all of them exhibited broadly tuned preferences with respect to speed of the target. Over 45% of cells responded optimally or exclusively at very fast (above 50 degrees/s) speeds. 3. The majority of neurons recorded from animals with intact visual cortex responded weakly but clearly to appropriately oriented localized stationary stimuli flashed on and off. About one-third of the cells responded with mixed on-off discharges from all over their receptive field. In the receptive fields of 10% of cells, separate on- and off-discharge regions could be revealed. In the receptive fields of the remaining cells, only on- or only off-discharge regions could be revealed. 4. The majority of neurons recorded after ablation of area 17 were orientation selective; 50% of the cells were also direction selective. All neurons responded well to moving targets; about 65% of them responded optimally or exclusively at very fast target speeds. 5. Destruction of the dorsolateral part of contralaterial area 17 and most of contralateral area 18 caused significant reduction in proportion of cells in area 18 which could be activated through either eye. 6. The majority of neurons recorded after ablation responded to appropriately oriented localized stationary stimuli flashed on and off. Cells with mixed on-off discharge regions all over the receptive field with separate on- and off-discharge regions and with only on- or only off-discharge regions were found. 7. It is concluded that the processing of afferent visual information in area 18 is, to a great extent, independent of the information carried to this area by associational fibers from cells of area 17.


1979 ◽  
Vol 204 (1157) ◽  
pp. 455-465 ◽  

In most respects, the response properties of cells in the secondary visual cortex of the newborn lamb were indistinguishable from those in the adult. The cells were sharply selective to orientation; the orientation preferences were the same in each eye, and they varied systematically as the electrode penetrated the cortex. The receptive-field organization did not differ noticeably from that in adults, and complex, hypercomplex, and a few simple cells were all observed. The ocular dominance distribution was similar to that in the adult. Most importantly, binocular cells were found with disparate receptive fields even in newborn, visually inexperienced animals. As in the adult, the disparities were largely horizontal, and they appeared to be arranged in columns. Many of the cells responded preferentially to a binocular stimulus at a particular disparity setting (often approximately zero), but unlike those in the adult almost all the binocular cells in the newborn lamb would also respond monocularly, and the enhancement at the optimal disparity was less than in the adult. The full development of binocular selectivity took several weeks, and was blocked by binocular deprivation. We conclude that the basic wiring of stereoscopic mechanisms is innate, but the development of mature binocular interaction may depend on an adaptive process which makes use of the visual information received during binocular stimulation.


2016 ◽  
Author(s):  
Vy A. Vo ◽  
Thomas C. Sprague ◽  
John T. Serences

ABSTRACTSelective visual attention enables organisms to enhance the representation of behaviorally relevant stimuli by altering the encoding properties of single receptive fields (RFs). Yet we know little about how the attentional modulations of single RFs contribute to the encoding of an entire visual scene. Addressing this issue requires (1) measuring a group of RFs that tile a continuous portion of visual space, (2) constructing a population-level measurement of spatial representations based on these RFs, and (3) linking how different types of RF attentional modulations change the population-level representation. To accomplish these aims, we used fMRI to characterize the responses of thousands of voxels in retinotopically organized human cortex. First, we found that the response modulations of voxel RFs (vRFs) depend on the spatial relationship between the RF center and the visual location of the attended target. Second, we used two analyses to assess the spatial encoding quality of a population of voxels. We found that attention increased fine spatial discriminability and representational fidelity near the attended target. Third, we linked these findings by manipulating the observed vRF attentional modulations and recomputing our measures of the fidelity of population codes. Surprisingly, we discovered that attentional enhancements of population-level representations largely depend on position shifts of vRFs, rather than changes in size or gain. Our data suggest that position shifts of single RFs are a principal mechanism by which attention enhances population-level representations in visual cortex.SIGNIFICANCE STATEMENTWhile changes in the gain and size of RFs have dominated our view of how attention modulates information codes of visual space, such hypotheses have largely relied on the extrapolation of single-cell responses to population responses. Here we use fMRI to relate changes in single voxel receptive fields (vRFs) to changes in the precision of representations based on larger populations of voxels. We find that vRF position shifts contribute more to population-level enhancements of visual information than changes in vRF size or gain. This finding suggests that position shifts are a principal mechanism by which spatial attention enhances population codes for relevant visual information in sensory cortex. This poses challenges for labeled line theories of information processing, suggesting that downstream regions likely rely on distributed inputs rather than single neuron-to-neuron mappings.


2015 ◽  
Vol 27 (7) ◽  
pp. 1344-1359 ◽  
Author(s):  
Sara Jahfari ◽  
Lourens Waldorp ◽  
K. Richard Ridderinkhof ◽  
H. Steven Scholte

Action selection often requires the transformation of visual information into motor plans. Preventing premature responses may entail the suppression of visual input and/or of prepared muscle activity. This study examined how the quality of visual information affects frontobasal ganglia (BG) routes associated with response selection and inhibition. Human fMRI data were collected from a stop task with visually degraded or intact face stimuli. During go trials, degraded spatial frequency information reduced the speed of information accumulation and response cautiousness. Effective connectivity analysis of the fMRI data showed action selection to emerge through the classic direct and indirect BG pathways, with inputs deriving form both prefrontal and visual regions. When stimuli were degraded, visual and prefrontal regions processing the stimulus information increased connectivity strengths toward BG, whereas regions evaluating visual scene content or response strategies reduced connectivity toward BG. Response inhibition during stop trials recruited the indirect and hyperdirect BG pathways, with input from visual and prefrontal regions. Importantly, when stimuli were nondegraded and processed fast, the optimal stop model contained additional connections from prefrontal to visual cortex. Individual differences analysis revealed that stronger prefrontal-to-visual connectivity covaried with faster inhibition times. Therefore, prefrontal-to-visual cortex connections appear to suppress the fast flow of visual input for the go task, such that the inhibition process can finish before the selection process. These results indicate response selection and inhibition within the BG to emerge through the interplay of top–down adjustments from prefrontal and bottom–up input from sensory cortex.


Sign in / Sign up

Export Citation Format

Share Document