single cell responses
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 9)

H-INDEX

22
(FIVE YEARS 2)

mBio ◽  
2022 ◽  
Author(s):  
Zhuo Chen ◽  
Priyanka Srivastava ◽  
Brenda Zarazúa-Osorio ◽  
Anuradha Marathe ◽  
Masaya Fujita ◽  
...  

In many bacterial and eukaryotic systems, multiple cell fate decisions are activated by a single master regulator. Typically, the activities of the regulators are controlled posttranslationally in response to different environmental stimuli.


2021 ◽  
Author(s):  
Michael P May ◽  
Brian Munsky

Synthetic biology seeks to develop modular bio-circuits that combine to produce complex, controllable behaviors. These designs are often subject to noisy fluctuations and uncertainties, and most modern synthetic biology design processes have focused to create robust components to mitigate the noise of gene expression and reduce the heterogeneity of single-cell responses. However, deeper understanding of noise can achieve control goals that would otherwise be impossible. We explore how an `Optogenetic Maxwell Demon' could selectively amplify noise to control multiple cells using single-input-multiple-output (SIMO) feedback. Using data-constrained stochastic model simulations and theory, we show how an appropriately selected stochastic SIMO controller can drive multiple different cells to different user-specified configurations irrespective of initial condition. We explore how controllability depends on cells' regulatory structures, the amount of information available to the controller, and the accuracy of the model used. Our results suggest that gene regulation noise, when combined with optogenetic feedback and non-linear biochemical auto-regulation, can achieve synergy to enable precise control of complex stochastic processes.


2021 ◽  
Author(s):  
Ying Yang ◽  
Friederike Mansfeld ◽  
Maria Kavallaris ◽  
Katharina Gaus ◽  
Richard Tilley ◽  
...  

Impedance spectroscopy is a widely used technique for monitoring cell-surface interactions and morphological changes, typically based on averaged signals from thousands of cells. However, acquiring impedance data at the single...


Science ◽  
2020 ◽  
Vol 368 (6487) ◽  
pp. eaaz5390 ◽  
Author(s):  
Lu Xu ◽  
Wenze Li ◽  
Venkatakaushik Voleti ◽  
Dong-Jing Zou ◽  
Elizabeth M. C. Hillman ◽  
...  

Olfactory responses to single odors have been well characterized but in reality we are continually presented with complex mixtures of odors. We performed high-throughput analysis of single-cell responses to odor blends using Swept Confocally Aligned Planar Excitation (SCAPE) microscopy of intact mouse olfactory epithelium, imaging ~10,000 olfactory sensory neurons in parallel. In large numbers of responding cells, mixtures of odors did not elicit a simple sum of the responses to individual components of the blend. Instead, many neurons exhibited either antagonism or enhancement of their response in the presence of another odor. All eight odors tested acted as both agonists and antagonists at different receptors. We propose that this peripheral modulation of responses increases the capacity of the olfactory system to distinguish complex odor mixtures.


2019 ◽  
Author(s):  
Hiraku Miyagi ◽  
Michio Hiroshima ◽  
Yasushi Sako

AbstractGrowth factors regulate cell fates, including their proliferation, differentiation, survival, and death, according to the cell type. Even when the response to a specific growth factor is deterministic for collective cell behavior, significant levels of fluctuation are often observed between single cells. Statistical analyses of single-cell responses provide insights into the mechanism of cell fate decisions but very little is known about the distributions of the internal states of cells responding to growth factors. Using multi-color immunofluorescent staining, we have here detected the phosphorylation of seven elements in the early response of the ERBB–RAS–MAPK system to two growth factors. Among these seven elements, five were analyzed simultaneously in distinct combinations in the same single cells. Although principle component analysis suggested cell-type and input specific phosphorylation patterns, cell-to-cell fluctuation was large. Mutual information analysis suggested that cells use multitrack (bush-like) signal transduction pathways under conditions in which clear cell fate changes have been reported. The clustering of single-cell response patterns indicated that the fate change in a cell population correlates with the large entropy of the response, suggesting a bet-hedging strategy is used in decision making. A comparison of true and randomized datasets further indicated that this large variation is not produced by simple reaction noise, but is defined by the properties of the signal-processing network.Author SummaryHow extracellular signals, such as growth factors (GFs), induce fate changes in biological cells is still not fully understood. Some GFs induce cell proliferation and others induce differentiation by stimulating a common reaction network. Although the response to each GF is reproducible for a cell population, not all single cells respond similarly. The question that arises is whether a certain GF conducts all the responding cells in the same direction during a fate change, or if it initially stimulates a variety of behaviors among single cells, from which the cells that move in the appropriate direction are later selected. Our current statistical analysis of single-cell responses suggests that the latter process, which is called a bet-hedging mechanism is plausible. The complex pathways of signal transmission seem to be responsible for this bet-hedging.


2019 ◽  
Author(s):  
António M. Fernandes ◽  
Johannes Larsch ◽  
Joseph C. Donovan ◽  
Thomas O. Helmbrecht ◽  
Duncan Mearns ◽  
...  

Visual objects naturally compete for the brain’s attention, and selecting just one of them for a behavioural response is often crucial for the animal’s survival1. The neural correlate of such stimulus prioritisation might take the form of a saliency map by which responses to one target are enhanced relative to distractors in other parts of the visual field2. Single-cell responses consistent with this type of computation have been observed in the tectum of primates, birds, turtles and lamprey2–7. However, the exact circuit implementation has remained unclear. Here we investigated the underlying neuronal mechanism presenting larval zebrafish with two simultaneous looming stimuli, each of which was able to trigger directed escapes on their own. Behaviour tracking revealed that the fish respond to these competing stimuli predominantly with a winner-take-all strategy. Using brain-wide functional recordings, we discovered neurons in the tectum whose responses to the target stimulus were non-linearly modulated by the saliency of the distractor. When the two stimuli were presented monocularly in different positions of the visual field, stimulus selection was already apparent in the activity of retinal ganglion cell axons, a likely consequence of antagonistic mechanisms operating outside the classical receptive field8,9. When the two stimuli were presented binocularly, i.e., on opposite sides of the fish, our analysis indicates that a loop involving excitatory and inhibitory neurons in the nucleus isthmi (NI) and the tectum weighed stimulus saliencies across hemispheres. Consistent with focal enhancement and global suppression, glutamatergic NI cells branch locally in the tectum, whereas GABAergic NI cells project broadly across both tectal hemispheres. Moreover, holographic optogenetic stimulation confirmed that glutamatergic NI neurons can modulate visual responses in the tectum. Together, our study shows, for the first time, context-dependent contributions of retinotectal and isthmotectal circuits to the computation of the visual saliency map, a prerequisite for stimulus-driven, bottom-up attention.


2019 ◽  
Author(s):  
Oleksandr Sorochynskyi ◽  
Stéphane Deny ◽  
Olivier Marre ◽  
Ulisse Ferrari

A major goal in neuroscience is to understand how populations of neurons code for stimuli or actions. While the number of neurons that can be recorded simultaneously is increasing at a fast pace, in most cases these recordings cannot access a complete population: some neurons that carry relevant information remain unrecorded. In particular, it is hard to simultaneously record all the neurons of the same type in a given area. Recent progress has made possible to determine the type of each recorded neuron in a given area thanks to genetic and physiological tools. However, it is unclear how to infer the activity of a full population of neurons of the same type from sequential recordings across different experiments. Neural networks exhibit collective behaviour, e.g. noise correlations and synchronous activity, that are not directly captured by a conditionally-independent model that would just pool together the spike trains from sequential recordings. Here we present a method to build population activity from single cell responses taken from sequential recordings, which only requires pairwise recordings to train the model. Our method combines copula distributions and maximum entropy modeling. After training, the model allows us to predict the activity of large populations using only sequential recordings of single cells. We applied this method to a population of ganglion cells, the retinal output, all belonging to the same type. From just the spiking response of each cell to a repeated stimulus, we could predict the full activity of the population. We could then generalize to predict the population responses to different stimuli and even to different experiments. As a result, we were able to use our approach to construct a synthetic model of a very large neuronal population, which uses data combined from multiple experiments. We then predicted the extent of synchronous activity and showed it grew with the number of neurons. This approach is a promising way to infer population activity from sequential recordings in sensory areas.


2019 ◽  
Author(s):  
Yair Lakretz ◽  
Ori Ossmy ◽  
Naama Friedmann ◽  
Roy Mukamel ◽  
Itzhak Fried

AbstractA long-standing controversy persists in psycholinguistic research regarding the way phonemes are coded in human auditory cortex during speech perception. Whereas the motor theory of speech perception suggests that phonemes are organized in terms of common articulatory gestures that generate them, auditory theories argue that phonetic processing is organized based on common spectro-temporal patterns in phoneme waveforms. Here, we recorded spiking activity in the superior temporal gyrus (STG) from six neurosurgical patients who performed a listening task with phoneme stimuli. Using a Naïve-Bayes model, we show that single-cell responses to phonemes are governed by articulatory features that have acoustic correlates (manner-of-articulation) and organized according to sonority, with two main clusters for sonorants and obstruents. We further find that ‘neural similarity’ (i.e. the similarity of evoked spiking activity between pairs of phonemes), is comparable to the ‘perceptual similarity’ (i.e. how much the pair of phonemes sound similar) based on perceptual confusion assessed behaviorally in healthy subjects. Thus phonemes that were perceptually similar, also had similar neural responses. Our findings establish that phonemes are encoded according to manner-of-articulation, supporting the auditory theories of perception, and that the perceptual representation of phonemes can be reflected by the activity of single neurons in STG.


2017 ◽  
Vol 114 (51) ◽  
pp. 13471-13476 ◽  
Author(s):  
Ranjan Mishra ◽  
Frank van Drogen ◽  
Reinhard Dechant ◽  
Soojung Oh ◽  
Noo Li Jeon ◽  
...  

Cells experience compressive stress while growing in limited space or migrating through narrow constrictions. To survive such stress, cells reprogram their intracellular organization to acquire appropriate mechanical properties. However, the mechanosensors and downstream signaling networks mediating these changes remain largely unknown. Here, we have established a microfluidic platform to specifically trigger compressive stress, and to quantitatively monitor single-cell responses of budding yeast in situ. We found that yeast senses compressive stress via the cell surface protein Mid2 and the calcium channel proteins Mid1 and Cch1, which then activate the Pkc1/Mpk1 MAP kinase pathway and calcium signaling, respectively. Genetic analysis revealed that these pathways work in parallel to mediate cell survival. Mid2 contains a short intracellular tail and a serine−threonine-rich extracellular domain with spring-like properties, and both domains are required for mechanosignaling. Mid2-dependent spatial activation of the Pkc1/Mpk1 pathway depolarizes the actin cytoskeleton in budding or shmooing cells, thereby antagonizing polarized growth to protect cells under compressive stress conditions. Together, these results identify a conserved signaling network responding to compressive mechanical stress, which, in higher eukaryotes, may ensure cell survival in confined environments.


Sign in / Sign up

Export Citation Format

Share Document