Second derivative backward differentiation formulae for ODEs based on barycentric rational interpolants

Author(s):  
Ali Abdi ◽  
Gholamreza Hojjati
Author(s):  
C. Chibuisi ◽  
Bright Okore Osu ◽  
C. Olunkwa ◽  
S. A. Ihedioha ◽  
S. Amaraihu

This paper considers the computational solution of first order delay differential equations (DDEs) using hybrid extended second derivative backward differentiation formulae method in block form without the implementation of interpolation techniques in estimating the delay term. By matrix inversion approach, the discrete schemes were obtained through the linear multistep collocation approach from the continuous form of each step number which after implementation strongly revealed the convergence and region of absolute stability of the proposed method. Computational results are presented and compared to the exact solutions and other existing method to demonstrate its efficiency and accuracy.


Author(s):  
Abdul-Rashid Ramazanov ◽  
V.G. Magomedova

For the function $f(x)=\exp(-x)$, $x\in [0,+\infty)$ on grids of nodes $\Delta: 0=x_0<x_1<\dots $ with $x_n\to +\infty$ we construct rational spline-functions such that $R_k(x,f, \Delta)=R_i(x,f)A_{i,k}(x)\linebreak+R_{i-1}(x, f)B_{i,k}(x)$ for $x\in[x_{i-1}, x_i]$ $(i=1,2,\dots)$ and $k=1,2,\dots$ Here $A_{i,k}(x)=(x-x_{i-1})^k/((x-x_{i-1})^k+(x_i-x)^k)$, $B_{i,k}(x)=1-A_{i,k}(x)$, $R_j(x,f)=\alpha_j+\beta_j(x-x_j)+\gamma_j/(x+1)$ $(j=1,2,\dots)$, $R_j(x_m,f)=f(x_m)$ при $m=j-1,j,j+1$; we take $R_0(x,f)\equiv R_1(x,f)$. Bounds for the convergence rate of $R_k(x,f, \Delta)$ with $f(x)=\exp(-x)$, $x\in [0,+\infty)$, are found.


2015 ◽  
pp. 21-30
Author(s):  
Abdul-Rashid Ramazanov ◽  
Vazipat Magomedova ◽  
◽  

1994 ◽  
Vol 86 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Haiping Su ◽  
Michel D. Ransom ◽  
Edward T. Kanemasu ◽  
Tanvir H. Demetriades‐Shah

2017 ◽  
Vol 919 (1) ◽  
pp. 7-12
Author(s):  
N.A Sorokin

The method of the geopotential parameters determination with the use of the gradiometry data is considered. The second derivative of the gravitational potential in the correction equation on the rectangular coordinates x, y, z is used as a measured variable. For the calculated value of the measured quantity required for the formation of a free member of the correction equation, the the Cunningham polynomials were used. We give algorithms for computing the second derivatives of the Cunningham polynomials on rectangular coordinates x, y, z, which allow to calculate the second derivatives of the geopotential at the rectangular coordinates x, y, z.Then we convert derivatives obtained from the Cartesian coordinate system in the coordinate system of the gradiometer, which allow to calculate the free term of the correction equation. Afterwards the correction equation coefficients are calculated by differentiating the formula for calculating the second derivative of the gravitational potential on the rectangular coordinates x, y, z. The result is a coefficient matrix of the correction equations and corrections vector of the free members of equations for each component of the tensor of the geopotential. As the number of conditional equations is much more than the number of the specified parameters, we go to the drawing up of the system of normal equations, from which solutions we determine the required corrections to the harmonic coefficients.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1398
Author(s):  
Natalia Kolkovska ◽  
Milena Dimova ◽  
Nikolai Kutev

We consider the orbital stability of solitary waves to the double dispersion equation utt−uxx+h1uxxxx−h2uttxx+f(u)xx=0,h1>0,h2>0 with combined power-type nonlinearity f(u)=a|u|pu+b|u|2pu,p>0,a∈R,b∈R,b≠0. The stability of solitary waves with velocity c, c2<1 is proved by means of the Grillakis, Shatah, and Strauss abstract theory and the convexity of the function d(c), related to some conservation laws. We derive explicit analytical formulas for the function d(c) and its second derivative for quadratic-cubic nonlinearity f(u)=au2+bu3 and parameters b>0, c2∈0,min1,h1h2. As a consequence, the orbital stability of solitary waves is analyzed depending on the parameters of the problem. Well-known results are generalized in the case of a single cubic nonlinearity f(u)=bu3.


Sign in / Sign up

Export Citation Format

Share Document