Fractional filter method for recovering the historical distribution for diffusion equations with coupling operator of local and nonlocal type

Author(s):  
Tran Thi Khieu ◽  
Tra Quoc Khanh
2002 ◽  
Vol 7 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
J. Christensen ◽  
F. Ivanauskas ◽  
J. Kulys

A mathematical model of amperometric biosensors has been developed. The model bases on non-stationary diffusion equations containing a non-linear term related to Michaelis-Menten kinetic of the enzymatic reaction. The model describes the biosensor response to mixtures of multiple compounds in two regimes of analysis: batch and flow injection. Using computer simulation, large amount of biosensor response data were synthesised for calibration of a biosensor array to be used for characterization of wastewater. The computer simulation was carried out using the finite difference technique.


2019 ◽  
Vol 118 (7) ◽  
pp. 73-76
Author(s):  
Sharanabasappa ◽  
P Ravibabu

Nowadays, during the process of Image acquisition and transmission, image information data can be corrupted by impulse noise. That noise is classified as salt and pepper noise and random impulse noise depending on the noise values. A median filter is widely used digital nonlinear filter  in edge preservation, removing of impulse noise and smoothing of signals. Median filter is the widely used to remove salt and pepper noise than rank order filter, morphological filter, and unsharp masking filter. The median filter replaces a sample with the middle value among all the samples present inside the sample window. A median filter will be of two types depending on the number of samples processed at the same cycle i.e, bit level architecture and word level architecture.. In this paper, Carry Look-ahead Adder median filter method will be introduced to improve the hardware resources used in median filter architecture for 5 window and 9 window for 8 bit and 16 bit median filter architecture.


1991 ◽  
Vol 24 (2) ◽  
pp. 217-220 ◽  
Author(s):  
Kazuyoshi Yano ◽  
Yasuko Yoshida ◽  
Mitsumi Kaneko
Keyword(s):  

Author(s):  
Fatemeh Alighardashi ◽  
Mohammad Ali Zare Chahooki

Improving the software product quality before releasing by periodic tests is one of the most expensive activities in software projects. Due to limited resources to modules test in software projects, it is important to identify fault-prone modules and use the test sources for fault prediction in these modules. Software fault predictors based on machine learning algorithms, are effective tools for identifying fault-prone modules. Extensive studies are being done in this field to find the connection between features of software modules, and their fault-prone. Some of features in predictive algorithms are ineffective and reduce the accuracy of prediction process. So, feature selection methods to increase performance of prediction models in fault-prone modules are widely used. In this study, we proposed a feature selection method for effective selection of features, by using combination of filter feature selection methods. In the proposed filter method, the combination of several filter feature selection methods presented as fused weighed filter method. Then, the proposed method caused convergence rate of feature selection as well as the accuracy improvement. The obtained results on NASA and PROMISE with ten datasets, indicates the effectiveness of proposed method in improvement of accuracy and convergence of software fault prediction.


1988 ◽  
Vol 53 (6) ◽  
pp. 1181-1197
Author(s):  
Vladimír Kudrna

The paper presents alternative forms of partial differential equations of the parabolic type used in chemical engineering for description of heat and mass transfer. It points at the substantial difference between the classic form of the equations, following from the differential balances of mass and enthalpy, and the form following from the concept of stochastic motion of particles of mass or energy component. Examples are presented of the processes that may be described by the latter method. The paper also reviews the cases when the two approaches become identical.


1991 ◽  
Vol 56 (3) ◽  
pp. 602-618
Author(s):  
Vladimír Kudrna

Parabolic partial differential equations used in chemical engineering for the description of mass transport and heat transfer and analogous relationship derived in stochastic processes theory are given. A standard transformation procedure is applied, allowing these relations to be generally written in curvilinear coordinates and particular expressions for cylindrical and spherical coordinates to be derived. The relation between the probability density for the position of a discernible particle and the concentration of a set of such particles is discussed.


Sign in / Sign up

Export Citation Format

Share Document