scholarly journals Simultaneous measurement of temperature and strain based on peak power changes and wavelength shift using only one uniform fiber bragg grating

2021 ◽  
Vol 53 (5) ◽  
Author(s):  
Abdollah Malakzadeh ◽  
Mohsen Mansoursamaei ◽  
Rasoul Pashaie
2021 ◽  
Author(s):  
abdollah malakzadeh ◽  
mohsen mansoursamaei ◽  
Rasoul Pashaie

Abstract Many efforts have been devoted to simultaneous measurements of strain and temperature by FBG sensors and several improving techniques have been resulted and implemented on the measurement. Most of them are based on two or more FBGs configurations or a single non-uniform FBG implementation. We propose simultaneous measurement of temperature and strain based on peak power changes and Bragg wavelength shifts using only one uniform fiber Bragg grating (FBG). We placed a ramp with the angle of θ, similar to a tilted cantilever beam, on an assumptive structure and stuck a uniform FBG on it. When a uniform strain applied to a structure, the cantilever beam converts it to a non-uniform strain distribution along with itself and consequently the uniform FBG. By creating this non-uniform strain distribution, the peak power of the reflection spectrum of the FBG will be sensitive to strain changes. In addition, the Bragg wavelength shift will be sensitive to both temperature and strain parameters. According to our simulation, temperature sensitivity of 14.15 pm/℃ is obtained for FBG sensor without any changes in the peak power. The strain sensitivity of 0.7837 pm/µε, and a nonlinear sensitivity according to a quadratic function for peak power variation are also observed.


CLEO: 2015 ◽  
2015 ◽  
Author(s):  
Fahad M. Abdulhussein ◽  
Maoxiang Hou ◽  
Shuhui Liu ◽  
Tahreer S. Mansour ◽  
Peixiang Lu

2006 ◽  
Vol 83 (2) ◽  
pp. 249-253 ◽  
Author(s):  
G. Ning ◽  
P. Shum ◽  
S. Aditya ◽  
D. Liu ◽  
Y. Gong ◽  
...  

2014 ◽  
Vol 68 (3) ◽  
Author(s):  
Siti Musliha Aishah Musa ◽  
RK Raja Ibrahim ◽  
Asrul Izam Azmi

This paper presents early work on Fiber Bragg grating (FBG) as temperature sensor to monitor temperature variation inside a packed-bed non-thermal plasma reactor. FBG made from germania-doped fiber with center Bragg wavelength of 1552.5 nm was embedded inside non-thermal plasma reactor with sphere shape dielectric bead (barium titanate) and used to probe the temperature variation inside the reactor. The experimental works have proven that FBG is a suitable sensor to monitor temperature variation inside of reactor via LabVIEW program. Besides that, Optical Spectrum Analyzer (OSA) recorded Bragg wavelength shift as voltage of power supply increases, which indicate the non-uniform temperature variation occurring inside the reactor. However, it does not affect the chemical reaction inside the reactor because the temperature condition is in steady state.


2022 ◽  
Vol 12 (2) ◽  
pp. 886
Author(s):  
Hun-Kook Choi ◽  
Young-Jun Jung ◽  
Bong-Ahn Yu ◽  
Jae-Hee Sung ◽  
Ik-Bu Sohn ◽  
...  

This paper demonstrates the fabrication of radiation-resistant fiber Bragg grating (FBG) sensors using infrared femtosecond laser irradiation. FBG sensors were written inside acrylate-coated fluorine-doped single-mode specialty optical fibers. We detected the Bragg resonance at 1542 nm. By controlling the irradiation conditions, we improved the signal strength coming out from the FBG sensors. A significant reduction in the Bragg wavelength shift was detected in the fabricated FBG sensors for a radiation dose up to 105 gray, indicating excellent radiation resistance capabilities. We also characterized the temperature sensitivity of the radiation-resistant FBG sensors and detected outstanding performance.


Sign in / Sign up

Export Citation Format

Share Document