scholarly journals Femtosecond-Laser-Assisted Fabrication of Radiation-Resistant Fiber Bragg Grating Sensors

2022 ◽  
Vol 12 (2) ◽  
pp. 886
Author(s):  
Hun-Kook Choi ◽  
Young-Jun Jung ◽  
Bong-Ahn Yu ◽  
Jae-Hee Sung ◽  
Ik-Bu Sohn ◽  
...  

This paper demonstrates the fabrication of radiation-resistant fiber Bragg grating (FBG) sensors using infrared femtosecond laser irradiation. FBG sensors were written inside acrylate-coated fluorine-doped single-mode specialty optical fibers. We detected the Bragg resonance at 1542 nm. By controlling the irradiation conditions, we improved the signal strength coming out from the FBG sensors. A significant reduction in the Bragg wavelength shift was detected in the fabricated FBG sensors for a radiation dose up to 105 gray, indicating excellent radiation resistance capabilities. We also characterized the temperature sensitivity of the radiation-resistant FBG sensors and detected outstanding performance.

2019 ◽  
Vol 9 (15) ◽  
pp. 3107 ◽  
Author(s):  
Carlo Molardi ◽  
Tiago Paixão ◽  
Aidana Beisenova ◽  
Rui Min ◽  
Paulo Antunes ◽  
...  

The characterization of Fiber Bragg Grating (FBG) sensors on a high-scattering fiber, having the core doped with MgO nanoparticles for polarization-dependent temperature sensing is reported. The fiber has a scattering level 37.2 dB higher than a single-mode fiber. FBGs have been inscribed by mean of a near-infrared femtosecond laser and a phase mask, with Bragg wavelength around 1552 nm. The characterization shows a thermal sensitivity of 11.45 pm/°C. A polarization-selective thermal behavior has been obtained, with sensitivity of 11.53 pm/°C for the perpendicular polarization (S) and 11.08 pm/°C for the parallel polarization (P), thus having 4.0% different sensitivity between the two polarizations. The results show the inscription of high-reflectivity FBGs onto a fiber core doped with nanoparticles, with the possibility of having reflectors into a fiber with tailored Rayleigh scattering properties.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5938
Author(s):  
Xinran Dong ◽  
Li Zeng ◽  
Dongkai Chu ◽  
Xiaoyan Sun

A hybrid sensing configuration for simultaneous measurement of strain and temperature based on fiber Bragg grating (FBG) written in an offset multimode fiber (MMF) interferometer using femtosecond laser pulse is proposed and demonstrated. A Mach–Zehnder interferometer is formed by splicing a section of MMF between two single-mode fibers (SMFs) and a high interference fringe of up to 15 dB is achieved. The sensing experimental results show a strain sensitivity of −1.17 pm/με and 0.6498 pm/με for the dip of MZI and Bragg peak, while a temperature sensitivity of 42.84 pm/°C and 19.96 pm/°C is measured. Furthermore, the matrix analysis has found that the strain and temperature resolution of the sensor are as high as ±12.36 με and ±0.35 °C, respectively. In addition, the sensor has merits of simple fabrication, good spectral quality, and high resolution, which shows attractive potential applications in dual-parameter sensing.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Husam Abduldaem Mohammed ◽  
Aqiel Almamori ◽  
Ali A. Alwahib

This paper reports a fiber Bragg grating (FBG) as a biosensor. The FBGs were etched using a chemical agent,namely,hydrofluoric acid (HF). This implies the removal of some part of the cladding layer. Consequently, the evanescent field propagating out of the core will be closer to the environment and become more sensitive to the change in the surrounding. The proposed FBG sensor was utilized to detect toxic heavy metal ions aqueous medium namely, copper ions (Cu2+). Two FBG sensors were etched with 20 and 40 μm diameters and fabricated. The sensors were studied towards Cu2+ with different concentrations using wavelength shift as a result of the interaction between the evanescent field and copper ions. The FBG sensors showed a good response in terms of significant wavelength shift in corresponding to varying Cu2+ concentrations when immersed in aqueous mediums. The sensors exhibited excellent repeatability towards Cu ions.The results demonstrate that the smaller FBG etching diameter, the better optical response in terms of wavelength and linearity. 


2018 ◽  
Vol 8 (12) ◽  
pp. 2616 ◽  
Author(s):  
Wen Zhang ◽  
Lianqing Zhu ◽  
Mingli Dong ◽  
Xiaoping Lou ◽  
Feng Liu

A temperature fiber sensor based on tapered fiber Bragg grating (tapered FBG) fabricated by femtosecond laser has been proposed and realized with good reproducibility. Firstly, the fiber taper with 25 μm diameter and 1000 μm length is fabricated by arc-discharge elongation using two standard single-mode fibers. Secondly, two first-order FBGs are fabricated in tapered and non-tapered fiber regions for comparison. Both FBGs are point-by-point direct-written by femtosecond laser, and the grating lengths are 1000 μm. Thirdly, a temperature experiment is performed using a heating chamber, and experimental results show that in the range of 30~350 °C, the temperature sensitivity of the tapered FBG has increased from 11.0 pm/°C to 12.3 pm/°C. The tapered FBG proposed here can be further configured for sensing other parameters in physical, chemical, and biomedical applications.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7004
Author(s):  
Weijia Bao ◽  
Shen Liu ◽  
Wenjie Feng ◽  
Yiping Wang

In this paper, we demonstrate a fiber Bragg grating (FBG) with a wide range and a comb with continuous cladding mode resonances inscribed in non-photosensitive single mode fibers using a femtosecond laser and a phase mask. The FBG is inscribed in the core and cladding, exciting a series of cladding modes in transmission. The birefringence induced by this FBG structure offers significant polarization-dependence for cladding modes, thus allowing the vector fiber twist to be perceived. By measuring the peak-to-peak differential intensity of orthogonally polarized cladding mode resonances, the proposed sensor presents totally opposite intensity response in the anticlockwise direction for the torsion angle ranging from −45° to 45°. The cladding mode comb approximately covers wavelengths over the O-, E-, S-, and C-bands in transmission. The cutoff cladding mode of air can be observed in the spectrum. Thus, the sensible refractive index range is estimated to be from 1.00 to 1.44. Temperature responsivity of the grating is also characterized. The proposed device potentially provides new solutions to the various challenges of physical vector and bio-chemical parameters sensing.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1730 ◽  
Author(s):  
Sandra Drusová ◽  
Wiecher Bakx ◽  
Adam D. Wexler ◽  
Herman L. Offerhaus

An understanding of groundwater flow near drinking water extraction wells is crucial when it comes to avoiding well clogging and pollution. A promising new approach to groundwater flow monitoring is the deployment of a network of optical fibers with fiber Bragg grating (FBG) sensors. In preparation for a field experiment, a laboratory scale aquifer was constructed to investigate the feasibility of FBG sensors for this application. Multiparameter FBG sensors were able to detect changes in temperature, pressure, and fiber shape with sensitivities influenced by the packaging. The first results showed that, in a simulated environment with a flow velocity of 2.9 m/d, FBG strain effects were more pronounced than initially expected. FBG sensors of a pressure-induced strain implemented in a spatial array could form a multiplexed sensor for the groundwater flow direction and magnitude. Within the scope of this research, key technical specifications of FBG interrogators for groundwater flow sensing were also identified.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
H. Ahmad ◽  
S. F. S. M. Noor ◽  
A. F. Arusin ◽  
S. A. Samsudin ◽  
K. Thambiratnam ◽  
...  

A polybutylene terephthalate (c-PBT) coating for enhancing the temperature sensitivity of a fiber Bragg grating- (FBG-) based sensor is proposed and demonstrated. The coating is seen to increase the sensitivity of the proposed sensor by a factor of approximately 11 times as compared to a bare FBG, giving a Bragg wavelength shift of 0.11 nm/°C with an operating temperature ranging from 30°C to 87°C. The proposed sensor is also easy to fabricate as compared to other similarly coated FBG sensors, giving it a significant advantage for field applications with the added advantage of being easily reformed to fit various housings, making it highly desirable for multiple real-world applications.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5825
Author(s):  
Joao B. Rosolem ◽  
Marcio C. Argentato ◽  
Fábio R. Bassan ◽  
Rivael S. Penze ◽  
Claudio Floridia ◽  
...  

We demonstrated in this work a filterless, multi-point and temperature-independent FBG (fiber Bragg grating) dynamical demodulator using pulse-width-modulation (PWM). In this approach, the FBG interrogation system is composed of a tunable laser and a demodulator that is designed to detect the wavelength shift of the FBG sensor without any optical filter making it very suitable to be used in harsh environments. In this work, we applied the proposed method that uses the PWM technique for FBG sensors placed in high pressure and high-temperature environments. The proposed method was characterized in the laboratory using an FBG sensor modulated in a frequency of 6 Hz, with a 1 kHz sweeping frequency in the wavelength range from 1527 to 1534 nm. Also, the method was evaluated in a field test in an engine of a thermoelectric power plant.


2013 ◽  
Vol 23 (1) ◽  
pp. 75
Author(s):  
Nguyen The Anh ◽  
Pham Thanh Son ◽  
Nguyen Thuy Van ◽  
Hoang Thi Hong Cam ◽  
Ngo Quang Minh ◽  
...  

We propose a novel principle of determination of fiber Bragg grating (FBG) wavelength shift which is impacted by a variation of physical parameters such as temperature, pressure and/or strain. In common case the wavelength shift of FBG was monitored by wavelength measurement using a high-cost spectrometer and a broad band light source. In our proposed technique the wavelength shift of FBG can be determined by change of lasing wavelength of distributed feedback laser (DFB-laser) due to the change of laser substrate temperature. The maximal opto-electrical intensity of photodetector would be obtained when the laser wavelength and FBG reflection wavelength are coincided. The FBG sensor prototype has shown excellent response for laser temperature change in the range of \(10^{\circ}C-50^{\circ}C\) with the ratio \(\Delta \lambda /\Delta T\) of the DFB laser is of 77.5 pm.K\(^{ - 1}\). Key features of the proposed technique are fabrication of low-cost FBG sensors for civil engineering.


Sign in / Sign up

Export Citation Format

Share Document