scholarly journals Electron-LO-phonon intrasubband scattering rates in a hollow cylinder under the influence of a uniform axial applied magnetic field

2021 ◽  
Vol 53 (12) ◽  
Author(s):  
Monkami Masale ◽  
Moletlanyi Tshipa
2021 ◽  
Author(s):  
Monkami Masale ◽  
Moletlanyi Tshipa

Abstract Scattering rates arising from the interactions of electrons with bulk longitudinal optical (LO) phonon modes in a hollow cylinder are calculated as functions of the inner radius and the uniform axial applied magnetic field. Now, the specific nature of electron-phonon interactions mainly depends on the character of the energy spectrum of electrons. As is well known, in cylindrical quantum wires, the application of a parallel magnetic field lifts the double degeneracy of the non-zero azimuthal quantum number states; m≠0; irrespective of all electron's radial quantum number l states. In fact, this Zeeman splitting is such that the m < 0 electron's energy subbands initially decrease with the increase of the parallel applied magnetic field. In a solid cylinder, the lowest-order; {l = 1; m = 0} subband is always the ground state. In a hollow cylinder, however, as the axial applied magnetic field is increased, the electron's energy subbands take turns at becoming the ground state; following the sequence {m=0,-1,-2...-N} of azimuthal quantum numbers. Furthermore, in a hollow cylinder, in general, the electron's energy separations between any two subbands are less than the LO phonon energy except for exceptionally high magnetic fields, and some highest-order quantum number states. In view of this, the discussion of the energy relaxation here is focused mainly on intrasubband scattering of electrons and only within the lowest-order {l = 1; m = 0} electron's energy subband. The intrasubband scattering rates are found to be characterized by shallow minima in their variations with the inner radius, again, for a fixed outer radius. This feature is a consequence of a balance between two seemingly conflicting effects of the electron's confinement by the inner and outer walls of the hollow cylinder. First; increased confinement of the charge carriers generally leads to the enhancement of the rates. Second; the presence of a hole in a hollow cylinder leads to a significant suppression of the scattering rates. The intrasubband scattering rates also show a somewhat parabolic increase in their variations with the applied magnetic field; an increase which is more pronounced in a relatively thick hollow cylinder.


Author(s):  
Alexander Vakhrushev ◽  
Abdellah Kharicha ◽  
Ebrahim Karimi-Sibaki ◽  
Menghuai Wu ◽  
Andreas Ludwig ◽  
...  

AbstractA numerical study is presented that deals with the flow in the mold of a continuous slab caster under the influence of a DC magnetic field (electromagnetic brakes (EMBrs)). The arrangement and geometry investigated here is based on a series of previous experimental studies carried out at the mini-LIMMCAST facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The magnetic field models a ruler-type EMBr and is installed in the region of the ports of the submerged entry nozzle (SEN). The current article considers magnet field strengths up to 441 mT, corresponding to a Hartmann number of about 600, and takes the electrical conductivity of the solidified shell into account. The numerical model of the turbulent flow under the applied magnetic field is implemented using the open-source CFD package OpenFOAM®. Our numerical results reveal that a growing magnitude of the applied magnetic field may cause a reversal of the flow direction at the meniscus surface, which is related the formation of a “multiroll” flow pattern in the mold. This phenomenon can be explained as a classical magnetohydrodynamics (MHD) effect: (1) the closure of the induced electric current results not primarily in a braking Lorentz force inside the jet but in an acceleration in regions of previously weak velocities, which initiates the formation of an opposite vortex (OV) close to the mean jet; (2) this vortex develops in size at the expense of the main vortex until it reaches the meniscus surface, where it becomes clearly visible. We also show that an acceleration of the meniscus flow must be expected when the applied magnetic field is smaller than a critical value. This acceleration is due to the transfer of kinetic energy from smaller turbulent structures into the mean flow. A further increase in the EMBr intensity leads to the expected damping of the mean flow and, consequently, to a reduction in the size of the upper roll. These investigations show that the Lorentz force cannot be reduced to a simple damping effect; depending on the field strength, its action is found to be topologically complex.


2005 ◽  
Vol 2005 (23) ◽  
pp. 3727-3737 ◽  
Author(s):  
Jitender Singh ◽  
Renu Bajaj

Effect of an axially applied magnetic field on the stability of a ferrofluid flow in an annular space between two coaxially rotating cylinders with nonaxisymmetric disturbances has been investigated numerically. The critical value of the ratioΩ∗of angular speeds of the two cylinders, at the onset of the first nonaxisymmetric mode of disturbance, has been observed to be affected by the applied magnetic field.


Sign in / Sign up

Export Citation Format

Share Document