scholarly journals Electron-LO-phonon Intrasubband Scattering Rates in a Hollow Cylinder Under the Influence of a Uniform Axial Applied Magnetic Field

Author(s):  
Monkami Masale ◽  
Moletlanyi Tshipa

Abstract Scattering rates arising from the interactions of electrons with bulk longitudinal optical (LO) phonon modes in a hollow cylinder are calculated as functions of the inner radius and the uniform axial applied magnetic field. Now, the specific nature of electron-phonon interactions mainly depends on the character of the energy spectrum of electrons. As is well known, in cylindrical quantum wires, the application of a parallel magnetic field lifts the double degeneracy of the non-zero azimuthal quantum number states; m≠0; irrespective of all electron's radial quantum number l states. In fact, this Zeeman splitting is such that the m < 0 electron's energy subbands initially decrease with the increase of the parallel applied magnetic field. In a solid cylinder, the lowest-order; {l = 1; m = 0} subband is always the ground state. In a hollow cylinder, however, as the axial applied magnetic field is increased, the electron's energy subbands take turns at becoming the ground state; following the sequence {m=0,-1,-2...-N} of azimuthal quantum numbers. Furthermore, in a hollow cylinder, in general, the electron's energy separations between any two subbands are less than the LO phonon energy except for exceptionally high magnetic fields, and some highest-order quantum number states. In view of this, the discussion of the energy relaxation here is focused mainly on intrasubband scattering of electrons and only within the lowest-order {l = 1; m = 0} electron's energy subband. The intrasubband scattering rates are found to be characterized by shallow minima in their variations with the inner radius, again, for a fixed outer radius. This feature is a consequence of a balance between two seemingly conflicting effects of the electron's confinement by the inner and outer walls of the hollow cylinder. First; increased confinement of the charge carriers generally leads to the enhancement of the rates. Second; the presence of a hole in a hollow cylinder leads to a significant suppression of the scattering rates. The intrasubband scattering rates also show a somewhat parabolic increase in their variations with the applied magnetic field; an increase which is more pronounced in a relatively thick hollow cylinder.

2013 ◽  
Vol 380-384 ◽  
pp. 4833-4836
Author(s):  
Guang Xin Wang ◽  
Xiu Zhi Duan

Within the effective mass approximation and the diagonalization method, the problem of electron and hole levels in rectangular quantum wires (QWRs) is investigated in detail. The mismatch of material mass between the wire and the barrier and anisotropy of the hole mass is considered in our calculation. We study the ground-state energy and the first excited-state energy for the case of a magnetic field applied along the wire. The quantum behaviors are similar to that of other QWRs which were studied before.


2013 ◽  
Vol 483 ◽  
pp. 170-173
Author(s):  
An Mei Wang

A method is proposed to exactly diagonalize the Hamiltonian of a N-layer quantum dot containing a single electron in each dot in arbitrary magnetic fields. the energy spectra of the dot are calculated as a function of the applied magnetic field. We find disco-ntinuous ground-state energy transitions induced by an external magnetic field in the case of strong coupling. However, in the case of weak coupling, such a transition does not occur and the angular momentum remains zero.


1996 ◽  
Vol 452 ◽  
Author(s):  
Sung-Bock Kim ◽  
Jeong-Rae Ro ◽  
El-Hang Lee

AbstractWe report optical properties of the micro-facetted InGaAs quantum wells and quantum wires on non-planar substrates employing magnetophotoluminescence (MPL). The InGaAs/GaAs structures were grown by chemical beam epitaxy on V-groove patterned GaAs substrates. In the presence of a magnetic field of 18 T, the diamagnetic shifts of exciton ground states of the (001)-and side-QWLs are ΔE=15.6 and 10.3 meV, respectively. In MPL of the facetted microstructure, we found that the different diamagnetic shifts strongly depend on the magnitude of the effective magnetic field as well as the quantum confinement. From comparing the intensities and full widths at half maximum, we easily found that side-QWLs are of higher quality than (OOl)-QWLs. We also fabricated InGaAs/GaAs quantum wires with a size of about 200 Å × (500–600) Å. By fitting the diamagnetic shifts (ΔΕ = 9.5 meV) of the exciton ground state with the calculated results of a variational method, we estimated that the reduced mass of the exciton is approximately 0.052 me.


2000 ◽  
Vol 53 (4) ◽  
pp. 543 ◽  
Author(s):  
D. J. Reilly ◽  
L. N. Pfeiffer ◽  
G. R. Facer ◽  
K. W. West ◽  
A. S. Dzurak ◽  
...  

Zero length quantum wires (or point contacts) exhibit unexplained conductance structure close to 0.7 � 2e 2 /h in the absence of an applied magnetic field. We have studied the density- and temperature-dependent conductance of ultra-low-disorder GaAs/AlGaAs quantum wires with nominal lengths l=0 and 2�m, fabricated from structures free of the disorder associated with modulation doping. In a direct comparision we observe structure near 0.7 � 2e 2 /h for l = 0, whereas thel = 2�m wires show structure evolving with increasing electron density to 0.5 � 2e 2 /h in zero magnetic field, the value expected for an ideal spin-split sub-band. Our results suggest the dominant mechanism through which electrons interact can be strongly affected by the length of the 1D region.


1992 ◽  
Vol 46 (23) ◽  
pp. 15432-15437 ◽  
Author(s):  
M. Masale ◽  
N. C. Constantinou ◽  
D. R. Tilley

Sign in / Sign up

Export Citation Format

Share Document