Effects of Process Parameters on Mechanical Adhesion of Thermal Oxide Scales on Hot-Rolled Low Carbon Steels

2013 ◽  
Vol 80 (1-2) ◽  
pp. 61-72 ◽  
Author(s):  
Somrerk Chandra-ambhorn ◽  
Komsan Ngamkham ◽  
Noppon Jiratthanakul
2001 ◽  
Vol 72 (5-6) ◽  
pp. 221-224 ◽  
Author(s):  
Madakasira Phaniraj ◽  
Shama Shamasundar ◽  
Ashok Kumar Lahiri

Texture ◽  
1974 ◽  
Vol 1 (3) ◽  
pp. 183-194 ◽  
Author(s):  
R. L. Every ◽  
M. Hatherly

The preferred orientations in hot-rolled, cold-rolled (70 % reduction), and annealed low-carbon steels (capped and aluminium-killed grades) have been investigated. Particular attention has been paid to the factors that control texture formation during annealing.The elastic energy stored in the cold-rolled steels is orientation dependent and the sequence, estimated from a Fourier analysis of X-ray line broadening, is V110>V111>V211>V100; the values range from 3.51 to 1.14 cal/g atom. The high energy components ({110}, {111}) have elongated cell structures but those of lower energy are equiaxed. In capped steels the high energy components recover and recrystallize most rapidly. In aluminium-killed steels both recovery and recrystallization are inhibited at low temperatures ≤ 500℃ and recrystallization begins first in the {111} components. It is shown that these effects are associated with precipitation and/or segregation of AlN during recovery. The recrystallization texture is determined primarily by oriented nucleation.


2011 ◽  
Vol 462-463 ◽  
pp. 407-412 ◽  
Author(s):  
Komsan Ngamkham ◽  
Satian Niltawach ◽  
Somrerk Chandra-ambhorn

The objective of this work was to carry out tensile tests to investigate the effect of finishing temperature on mechanical adhesion of thermal oxide scale on hot-rolled low carbon steel strips. Two hot-rolled low carbon steel strips were produced in an industrial hot rolling line by fixing a coiling temperature at 620 °C and varying finishing temperatures at 820 and 910 °C. Two testing methods were conducted. First, each of a number of samples was subjected to a given imposed strain with ex-situ imaging of scale surface after straining. Second, only one sample was strained in a test with ex-situ imaging of scale surface at every 2 mm elongation of the sample. A spallation ratio, an area where scale was spalled out and normalised by the total area observed by microscope, was plotted as a function of the imposed strain. These two methods gave the same tendency of results as follows. At a given strain, the spallation ratio of scale on steel produced using higher finishing temperature was larger. The gradient of spallation ratio with respect to the imposed strain of that scale was also steeper. This reflects the higher susceptibility of scale to spall out with increasing imposed strain. This behaviour might be related to the larger thickness of scale on steel produced using higher finishing temperature. For the second testing method, lowering the magnification of microscope to observe scale spallation from 50x to 20x increased R2 of the curve of spallation ratio versus the imposed strain, as well as improved the reproducibility of the test.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 646 ◽  
Author(s):  
Alexander Zaitsev ◽  
Anton Koldaev ◽  
Nataliya Arutyunyan ◽  
Sergey Dunaev ◽  
Dmitrii D’yakonov

The most promising direction for obtaining a unique combination of difficult-to-combine properties of low-carbon steels is the formation of a dispersed ferrite microstructure and a volumetric system of nanoscale phase precipitates. This study was aimed at establishing the special features of the composition influence on the characteristics of the microstructure, phase precipitates, and mechanical properties of hot-rolled steels of the ferritic class. It was carried out by transmission electron microscopy and testing the mechanical properties of metal using 8 laboratory melts of low-carbon steels microalloyed by V, Nb, Ti, and Mo in various combinations. It was found that block ferrite prevails in the structure of steel cooled after hot rolling at a rate of 10–15 °C/s. Lowering of the microalloying components content leads to a decrease in the block ferrite fraction to 20–35% and the dominance of polygonal ferrite. The presence of nanoscale carbide (carbonitride) precipitates of austenitic and interphase/mixed types was detected in the rolled steels. It was established that the tendencies of changes in the characteristics of the structural state and present phase precipitates correlate well with obtained values of strength properties. The advantages of titanium-based microalloying systems in comparison with vanadium-based are shown.


2017 ◽  
Vol 115 ◽  
pp. 30-40 ◽  
Author(s):  
S. Chandra-ambhorn ◽  
T. Phadungwong ◽  
K. Sirivedin

2008 ◽  
Vol 79 (9) ◽  
pp. 708-712 ◽  
Author(s):  
J. K. Chen

Sign in / Sign up

Export Citation Format

Share Document