rapid heat treatment
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Victor M. Anishchik ◽  
Valiantzina A. Harushka ◽  
Uladzimir A. Pilipenka ◽  
Vladimir V. Ponariadov ◽  
Vitali A. Saladukha ◽  
...  

The results of the effect of rapid heat treatment on the optical characteristics of a silicon wafer surface in the region of the G-point in the Brillouin zone are presented for different types of silicon wafers conductivity, their doping level, the covalent radii of dopants and the crystallographic orientation of the wafer surface. The absorption coefficient and refractive index of the initial 100 mm diameter samples KDB-12 <100>, KDB-10 <111>, KDB-0.005 <100> and KES-0.015 <100>, underwent standard chemical-mechanical polishing, was measured on a Uvisel 2 ellipsometer (Horiba Scientific, France) in the spectral range 0.6–6.0 eV (200–2100 nm) before and after rapid heat treatment. The incidence angle of the light beam was 70° relative to the sample plane. It is shown that the changes in the optical characteristics of the silicon surface in the spectral region of the location of the G-point in the Brillouin zone after rapid heat treatment is due to a decrease in the surface deformation potential due to solid-phase recrystallisation of the mechanically damaged layer. It has been established that carrying out the rapid heat treatment of silicon samples with a high boron concentration leads to a more significant decrease in the refractive index and absorption compared with silicon with a low boron concentration, due to an increase in the depletion of the silicon surface with boron as a result of diffusion processes at the silicon – silicon dioxide interface.


2021 ◽  
Vol 1032 ◽  
pp. 152-156
Author(s):  
Peng Lei ◽  
Shu Cheng Dong ◽  
Guang Yu Ma ◽  
Tuo Cheng ◽  
O.M. Ivasishin

TC16 titanium alloy is a martensite α+β two-phase high strength titanium alloy, which can improve its structure and enhance properties through heat treatment. Effect of annealing process on microstructure and tensile properties of TC16 titanium alloy was investigated using optical microscope, scanning electron microscope and universe tensile test machine. The results show that when annealed at 720°C for 4h then furnace cooling to ambient temperature, the tensile strength of the TC16 alloy reaches nearly 900MPa,the elongation reaches 19.6% and the reduction of area reaches 65%, which present a good comprehensive performance.


2021 ◽  
Author(s):  
Jinhua Xiong ◽  
Yuling Li ◽  
Shaojuan Lu ◽  
Wei Guo ◽  
Junhua Zou ◽  
...  

Controllable sulphur vacancies (Sv) confined in nanoporous ZnS nanoplates (Sv-ZnS) were prepared successfully, via rapid heat treatment of ZnS(en)0.5 nanoplates. Sv with controllable concentrations originated from in-situ doping of N...


2020 ◽  
Vol 180 ◽  
pp. 66-70 ◽  
Author(s):  
Zhiyi Zou ◽  
Marco Simonelli ◽  
Juliano Katrib ◽  
Georgios Dimitrakis ◽  
Richard Hague

2020 ◽  
Vol 321 ◽  
pp. 11036
Author(s):  
P.E. Markovsky ◽  
V.I. Bondarchuk ◽  
S.V. Akhonin ◽  
A.V. Berezos

Three commercial titanium alloys: two-phase α+β Ti-6Al-4V (low alloyed), and T110 (Ti-5.5Al-1.5V-1.5Mo-4Nb-0.5Fe, higher-alloyed), and β-metastable Ti-1.5Al-6.8Mo-4.5Fe were melted using EBCHM approach in the form of 100 mm in diameter ingots with the weight of about 20 kg each. After 3D hot pressing at single β-field temperatures ingots were rolled at temperatures below β-transus onto plates with thickness varying from 3 mm to 25 mm. Different heat treatments, including annealing at α+β or β-field temperatures, and special strengthening Surface Rapid Heat Treatment (SRHT) which after final aging provided special gradient microstructure with a hardened surface layer over ductile basic core, were employed. Mechanical properties were studied with tensile and 3-point flexure tests. It was established that the best combination of tensile strength and ductility in all alloys studied was obtained after SRHT, whereas at 3-point flexure better characteristics were obtained for the materials annealed at temperatures of (α+β)-field. At the same time, ballistic tests made at a certified laboratory with different kinds of ammunition showed essential superiority of plates having upper layers strengthened with SRHT. The effect of microstructure of the alloys, plate thickness and type of used ammunition on ballistic resistance is discussed.


Sign in / Sign up

Export Citation Format

Share Document