High-Temperature Corrosion Behaviour of Aluminized-Coated and Uncoated Alloy 718 Under Cyclic Oxidation and Corrosion in NaCl Vapour at 750 °C

2018 ◽  
Vol 90 (5-6) ◽  
pp. 713-735 ◽  
Author(s):  
Pius Kibet Koech ◽  
Chaur Jeng Wang
2021 ◽  
pp. 110032
Author(s):  
Jieyan Yuan ◽  
Shujuan Dong ◽  
Jianing Jiang ◽  
Longhui Deng ◽  
Xueqiang Cao

2019 ◽  
Vol 66 (2) ◽  
pp. 236-241 ◽  
Author(s):  
Somrerk Chandra-Ambhorn ◽  
Neramit Krasaelom ◽  
Tummaporn Thublaor ◽  
Sirichai Leelachao

Purpose This study aims to apply the pack cementation to develop the Fe-Al layers on the surface of FC 25 cast iron in order to increase the high-temperature corrosion resistance of the alloy. Design/methodology/approach Pack cementation was applied on the surface of FC 25 cast iron at 1,050°C. The bare and aluminised alloys were subjected to the oxidation test in 20 per cent O2-N2 at 850 °C. Scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD) were used for characterisation. Findings The layers of pack cementation consisted of Fe2Al5, FeAl2 and FeAl, and solid solution alloyed with Al. The oxidation kinetics of the bare cast iron was parabolic. Mass gain of the aluminised cast iron was significantly decreased compared with that of the bare cast iron. This was because of the protective alumina formation on the aluminised alloy surface. Al in the Fe–Al layer also tended to be homogenised during oxidation. Originality/value Even though the aluminising of alloys was extensively studied, the application of that process to the FC 25 cast iron grade was originally developed in this work. The significantly reduced mass gain of the aluminised FC 25 cast iron makes the studied alloy be promising for the use as a valve seat insert in an agricultural single-cylinder four-stroke engine, which might be run by using a relatively cheaper fuel, i.e. LPG, but as a consequence requires the higher oxidation resistance of the engine parts.


2002 ◽  
pp. 287-322

Abstract Superalloys tend to operate in environments where they are subjected to high-temperature corrosion, oxidation, and the erosive effects of hot gases. This chapter discusses the nature of these attacks and the effectiveness of various protection methods. It describes the primary forms of oxidation, the development of protective oxides, and the conditions associated with mixed gas corrosion and hot corrosion attack. It discusses oxidation and corrosion testing, the equipment used, and various ways to present the associated data. It describes the effect of gaseous oxidation on different alloys, discusses the formation of oxide scale in the presence of mixed gases, and explains how alloy composition contributes to oxide growth. The chapter discusses the underlying chemistry of hot corrosion, how to identify its effects, and how it progresses under various conditions. It also discusses protective coatings, including aluminide diffusion, overlay, and thermal barrier types, and how they perform in different environments based on their ability to tolerate strain.


1999 ◽  
Vol 7 (10) ◽  
pp. 1183-1194 ◽  
Author(s):  
J. Klöwer ◽  
U. Brill ◽  
U. Heubner

Sign in / Sign up

Export Citation Format

Share Document