aisi 304 steel
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 61)

H-INDEX

17
(FIVE YEARS 4)

MRS Advances ◽  
2021 ◽  
Author(s):  
Ángel del Jesús León-Gerónimo ◽  
Quetzalmaflor Miranda-Hernández ◽  
Jorge A. Verduzco-Martínez ◽  
José Lemus-Ruiz

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7207
Author(s):  
Vineet Dubey ◽  
Anuj Kumar Sharma ◽  
Prameet Vats ◽  
Danil Yurievich Pimenov ◽  
Khaled Giasin ◽  
...  

The enormous use of cutting fluid in machining leads to an increase in machining costs, along with different health hazards. Cutting fluid can be used efficiently using the MQL (minimum quantity lubrication) method, which aids in improving the machining performance. This paper contains multiple responses, namely, force, surface roughness, and temperature, so there arises a need for a multicriteria optimization technique. Therefore, in this paper, multiobjective optimization based on ratio analysis (MOORA), VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), and technique for order of preference by similarity to ideal solution (TOPSIS) are used to solve different multiobjective problems, and response surface methodology is also used for optimization and to validate the results obtained by multicriterion decision-making technique (MCDM) techniques. The design of the experiment is based on the Box–Behnken technique, which used four input parameters: feed rate, depth of cut, cutting speed, and nanofluid concentration, respectively. The experiments were performed on AISI 304 steel in turning with minimum quantity lubrication (MQL) and found that the use of hybrid nanofluid (Alumina–Graphene) reduces response parameters by approximately 13% in forces, 31% in surface roughness, and 14% in temperature, as compared to Alumina nanofluid. The response parameters are analyzed using analysis of variance (ANOVA), where the depth of cut and feed rate showed a major impact on response parameters. After using all three MCDM techniques, it was found that, at fixed weight factor with each MCDM technique, a similar process parameter was achieved (velocity of 90 m/min, feed of 0.08 mm/min, depth of cut of 0.6 mm, and nanoparticle concentration of 1.5%, respectively) for optimum response. The above stated multicriterion techniques employed in this work aid decision makers in selecting optimum parameters depending upon the desired targets. Thus, this work is a novel approach to studying the effectiveness of hybrid nanofluids in the machining of AISI 304 steel using MCDM techniques.


Author(s):  
Amresh Kumar ◽  
Rajesh Sharma ◽  
Santosh Kumar ◽  
Prajjawal Verma

Author(s):  
Mingxiao Shi ◽  
Jiugong Chen ◽  
Jingyong Li ◽  
Weidong Mao ◽  
Shengliang Li ◽  
...  

Author(s):  
W. Nogueira Junior ◽  
M. Naeem ◽  
T.H.C. Costa ◽  
J Díaz-Guillén ◽  
M.R. Díaz-Guillén ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 668
Author(s):  
Gustavo Pinto ◽  
Andresa Baptista ◽  
Francisco Silva ◽  
Jacobo Porteiro ◽  
José Míguez ◽  
...  

Micro-abrasion remains a test configuration hugely used, mainly for thin coatings. Several studies have been carried out investigating the parameters around this configuration. Recently, a new study was launched studying the behavior of different ball materials in abrasive particles’ dynamics in the contact area. This study intends to extend that study, investigating new ball materials never used so far in this test configuration. Thus, commercial balls of American Iron and Steel Institute (AISI) 52100 steel, Stainless Steel (SS) (AISI) 304 steel and Polytetrafluoroethylene (PTFE) were used under different test conditions and abrasive particles, using always the same coating for reference. Craters generated on the coated samples’ surface and tracks on the balls’ surface were carefully observed by Scanning Electron Microscopy (SEM) and 3D microscopy in order to understand the abrasive particles’ dynamics. As a softer material, more abrasive particles were entrapped on the PTFE ball’s surface, generating grooving wear on the samples. SS AISI 304 balls, being softer than the abrasive particles (diamond), also allowed particle entrapment, originating from grooving wear. AISI 52100 steel balls presented particle dynamics that are already known. Thus, this study extends the knowledge already existing, allowing to better select the ball material to be used in ball-cratering tests.


Sign in / Sign up

Export Citation Format

Share Document