scholarly journals Specialized edaphic niches of threatened copper endemic plant species in the D.R. Congo: implications for ex situ conservation

2016 ◽  
Vol 413 (1-2) ◽  
pp. 261-273 ◽  
Author(s):  
Sylvain Boisson ◽  
Michel-Pierre Faucon ◽  
Soizig Le Stradic ◽  
Bastien Lange ◽  
Nathalie Verbruggen ◽  
...  
Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Natacha Coelho ◽  
Sandra Gonçalves ◽  
Anabela Romano

Endemic plant species are usually more vulnerable to anthropogenic threats and natural changes and, therefore, hold a higher extinction risk. The preservation of these species is a major concern on a worldwide context and in situ protection alone will not guarantee their conservation. Ex situ conservation measures must be undertaken to support the conservation of these species, and seed banking is the more efficient and cost-effective method. However, when seed banking is not an option, alternative approaches should be considered. Biotechnological tools provide new and complementary options for plant conservation including short-, medium-, and long-term strategies, and their application for plant species conservation has increased considerably in the last years. This review provides information about the status of the use biotechnology-based techniques for the conservation of endemic plant species. Particular attention is given to cryopreservation, since is the only long-term ex situ conservation strategy that can complement and support the other conservation measures. The cryopreservation of plant genetic resources is, however, more focused on crop or economically important species and few studies are available for endemic plant species. The plant material used, the cryopreservation methods employed, and the assessment of cryogenic effects are reviewed. The reasons to explain the difficulties in cryopreserving these species are discussed and new strategies are proposed to facilitate and increase the interest on this matter. We expect that further studies on the conservation of endemic plant species will increase in a near future, thus contributing to maintain these valuable genetic resources.


2022 ◽  
Vol 93-94 ◽  
pp. 1-15
Author(s):  
Victoria Gritsenko

Gymnospermium odessanum is a rare relict endemic plant species. The research was carried out during G. odessanum flowering in 2019–2021 at the botanical-geographical plot “Steppes of Ukraine” of the M.M. Gryshko National Botanical Garden, National Academy of Sciences of Ukraine (NBG). Ecological and coenotic conditions of introduction at the NBG differ from natural habitats of the species and are not optimal for its vegetation. However, this species demonstrated ecological-coenotic plasticity and, over the decades, has formed a stable homeostatic introduction coenopopulation here. As of 2021, the area of introduction coenopopulation of G. odessanum at the NBG was 2,075 m2. It comprises 412 individuals of this species (including 40 seedlings, 241 juvenile, 45 immature, 40 virginal, 45 generative, and 1 sub-senile plants). Coenopopulation fragments with a high density of G. odessanum individuals are rare here, so the average density is low – only 0.2 individuals per 1 m2. In 2021, in the spectrum of age states, the total percentage of pregenerative individuals was very high and reached 88.8 %; the share of generative individuals was 10.9 %.In general, the age structure of the introduction coenopopulation of G. odessanum is characterized by long-term (2010–2021) stability. The spatial distribution of individuals in the introduction coenopopulation is of two kinds – random and in groups. This is due to combined myrmecochoric and barochoric propagation. Also due to myrmecochory, this coenopopulation tends to spread the area. Compared to natural coenopopulations, the introduction coenopopulation of G. odessanum at the NBG is characterized by a larger area, a much significant number, and, at the same time, a low average density of individuals. However, like in most of natural populations, its age spectrum is left-sided.The conducted research testifies the successful formation of the introduction coenopopulation of G. odessanum in the meadow-steppe cultural phytocoenosis of the NBG. This introduction coenopopulation is an example of a successful multi-year scientific experiment and effective ex situ protection and preservation of G. odessanum on the northern border of the Right Bank Forest-Steppe of Ukraine, far beyond the natural range of this endemic plant species.


Oryx ◽  
2015 ◽  
Vol 50 (3) ◽  
pp. 419-430 ◽  
Author(s):  
G. Walters ◽  
E. Ngagnia Ndjabounda ◽  
D. Ikabanga ◽  
J. P. Biteau ◽  
O. Hymas ◽  
...  

AbstractUrban development is an increasing threat to the integrity of formerly remote protected areas, in some cases resulting in their downgrading, downsizing or degazetting. One-quarter of previously remote protected areas are now within 17 km of a city and thus face the threat of urbanization. Here we describe a case of avoided downgrading, downsizing and degazetting of a protected area in the Mondah forest of Gabon, north of Libreville. Since its creation in 1934 the Forêt Classée de la Mondah has been downsized regularly, losing 40% of its area over 80 years. During this time the forest surrounding the Forêt Classée was subject to usage for urban and peri-urban needs, including agriculture, sand extraction, collection of medicinal plants, ceremonies, and housing construction. In 2010 the area was threatened with further downsizing. The presence of narrowly endemic plant species in the area was suspected, and mapping and evaluation of these species was proposed in an effort to maintain the protected area boundaries. Botanical field work, including ex situ conservation measures and participant observation in nearby forest communities, was conducted; 24 endemic species, all threatened by urbanization, were evaluated using the criteria for the IUCN Red List of Threatened Species. The borders of the protected area were maintained because of its role in maintaining irreplaceable habitat for threatened species. The area was renamed Raponda Walker Arboretum in 2012.


2006 ◽  
Vol 2 (2) ◽  
pp. 165-168 ◽  
Author(s):  
Dennis M Hansen ◽  
Karin Beer ◽  
Christine B Müller

Most floral nectars are clear as water, and the enigmatic coloured nectar in three endemic plant species in Mauritius has puzzled scientists studying it. One hypothesis about the possible ecological function of coloured nectar is that it serves as a visual signal for pollinators. Recent studies have shown that at least two of the three Mauritian plant species with coloured nectar are visited and pollinated by endemic Phelsuma geckos. We here provide experimental evidence for the visual signal hypothesis by showing that Phelsuma ornata geckos prefer coloured over clear nectar in artificial flowers. In flowering plants, coloured nectar could additionally function as an honest signal that allows pollinators to assert the presence and judge the size of a reward prior to flower visitation, and to adjust their behaviour accordingly, leading to increased pollinator efficiency. Our study provides a first step in understanding this rare and intriguing floral trait.


Molecules ◽  
2013 ◽  
Vol 18 (9) ◽  
pp. 10694-10706 ◽  
Author(s):  
Boris Mandić ◽  
Milena Simić ◽  
Ivan Vučković ◽  
Ljubodrag Vujisić ◽  
Miroslav Novaković ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Rapheal Wangalwa ◽  
Eunice Apio Olet ◽  
Grace Kagoro-Rugunda ◽  
Casim Umba Tolo ◽  
Patrick E. Ogwang ◽  
...  

Citropsis articulata is a medicinal plant that is increasingly threatened by unsustainable methods of harvesting and habitat degradation. Owing to the fact that this plant species is highly utilized for herbal medicine and is currently restricted to a few forest reserves in Uganda, this has significant implications for ex situ conservation. Therefore, the aim of this study was to assess how physiographical factors influence the occurrence and distribution of C. articulata in the three forest reserves in Uganda, namely, Budongo, Mabira, and Kibale National Park. The study was carried out in 15 compartmental sites in each of the three forests. In each compartmental site, 4 plots of 60 m × 60 m were systematically established, and within each plot, 4 subplots each of size 20 m × 20 m were randomly setup. A total of 240 subplots were assessed for occurrence of Citropsis articulata in each forest. The results indicated a significant ( p < 0.05 ) variation in the density of C. articulata with the highest recorded in Kibale National Park. Citropsis articulata generally occurred at moderate altitudinal landscapes (overall elevation = 1200.0 ± 20.73 m) with soils that are moderately acidic (overall pH = 5.7 ± 0.10), low in salinity (overall salinity = 84.0 ± 3.84 mg/l), and moderate levels of macro- and micronutrients. Citropsis articulata was generally associated with plant communities dominated by canopy tree species of genera such as Chryosphyllum, Celtis, Markhamia, Cynometra, Lasiodiscus, Trilepisium, Funtumia, and Diospyros, thus suggesting that C. articulata is a shade-tolerant species. Establishing the ecological requirements of this plant species among other things informs the potential for ex situ production of this plant. This will not only provide alternative sources of plant harvest but also go a long way in relieving the current harvest pressures exerted on the conserved wild populations of this plant species.


Sign in / Sign up

Export Citation Format

Share Document