Cross tolerance to phosphorus deficiency and drought stress in mungbean is regulated by improved antioxidant capacity, biological N2-fixation, and differential transcript accumulation

2021 ◽  
Author(s):  
Surendra Kumar Meena ◽  
Renu Pandey ◽  
Sandeep Sharma ◽  
Gayacharan ◽  
Krishnapriya Vengavasi ◽  
...  
2021 ◽  
Author(s):  
Surendra Kumar Meena ◽  
Renu Pandey ◽  
Sandeep Sharma ◽  
Gayacharan ◽  
Krishnapriya Vengavasi ◽  
...  

Abstract Aims The mobility of phosphorus (P) depends on availability of water in soil; both are limited resources for crop production. We studied the mechanisms governing cross tolerance in the contrasting mungbean accessions for drought and low P stress. Methods Tolerant (IC333090 and IC507340) and sensitive (IC488526 and EC397142) mungbean accessions were grown in soil with treatments: control (sufficient P, irrigated), low P (no P, irrigated), drought (sufficient P, irrigation withheld), and combined stress (no P, irrigation withheld) as well as recovery. Results Drought reduced the relative water content and membrane stability index, affecting overall plant growth. Combined stress (low P and drought) significantly increased root growth, leaf area, and biomass in tolerant accessions, which was attributed to enhanced nutrient uptake and symbiotic N2-fixation. Combined stress also increased osmolyte concentration, antioxidative compounds, and scavenging activity of antioxidant enzymes in tolerant accessions while recovery from drought significantly reduced osmolyte concentration. Transcript abundance of candidate genes related to drought and low P was significantly higher in leaves of IC333090 than IC488526. Conversely, low-P-induced genes (VrSPX1, VrPHO1, VrSQD1, VrPEPCase, and VrMDH) in IC488526 were either downregulated or did not significantly change under combined stress. The drought recovery was better in IC333090 due to enhanced expression of stress-responsive genes. Conclusions Tolerant mungbean accession could be used as potential donor parents in breeding programs. Traits imparting cross tolerance to drought and low P stress may facilitate better varietal selection for increased crop productivity under low P, drought, and the combined stress.


Nitrogen ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 86-98
Author(s):  
Kelly Nery Bighi ◽  
Ranieri Ribeiro Paula ◽  
Marcos Vinícius Winckler Caldeira ◽  
Diego Lang Burak ◽  
Eduardo de Sá Mendonça ◽  
...  

We investigated the nitrogen pools in monocultures of legume species widely used in reforestation in Brazil that have contrasting growth and nitrogen acquisition strategies. The plantations were established with the slow-growing and N2-fixing tree Anadenanthera peregrina var. peregrina, and the fast-growing and non-fixing tree Schizolobium parahyba var. amazonicum. The measurements of N pools in the tree biomass and the soil followed standard methods and were carried out on 54 experimental plots. The N2 fixation pools were evaluated by abundance natural of 15N and the N accretion methods. The soil N content was of similar magnitude between species and stand densities. The species showed similar amounts of N in the biomass, but divergent patterns of N accumulation, as well as the 15N signature on the leaves. S. parahyba accumulated most N in the stem, while A. peregrina accumulated N in the roots and leaves. However, the N accumulation in biomass of A. peregrina stand was less constrained by environment than in S. parahyba stands. The percentage of N derived from N2 fixation in A. peregrina stands decreased with the increase of stand density. The biological N2 fixation estimates depended on the method and the response of tree species to environment.


AMBIO ◽  
2002 ◽  
Vol 31 (7) ◽  
pp. 612-613 ◽  
Author(s):  
Charles Lugomela ◽  
Birgitta Bergman

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2149
Author(s):  
Nkulu Kabange Rolly ◽  
Byung-Wook Yun

Nitrogen (N) is an essential macronutrient, which contributes substantially to the growth and development of plants. In the soil, nitrate (NO3) is the predominant form of N available to the plant and its acquisition by the plant involves several NO3 transporters; however, the mechanism underlying their involvement in the adaptive response under abiotic stress is poorly understood. Initially, we performed an in silico analysis to identify potential binding sites for the basic leucine zipper 62 transcription factor (AtbZIP62 TF) in the promoter of the target genes, and constructed their protein–protein interaction networks. Rather than AtbZIP62, results revealed the presence of cis-regulatory elements specific to two other bZIP TFs, AtbZIP18 and 69. A recent report showed that AtbZIP62 TF negatively regulated AtbZIP18 and AtbZIP69. Therefore, we investigated the transcriptional regulation of AtNPF6.2/NRT1.4 (low-affinity NO3 transporter), AtNPF6.3/NRT1.1 (dual-affinity NO3 transporter), AtNRT2.1 and AtNRT2.2 (high-affinity NO3 transporters), and AtGLU1 and AtGLU2 (both encoding glutamate synthase) in response to drought stress in Col-0. From the perspective of exploring the transcriptional interplay of the target genes with AtbZIP62 TF, we measured their expression by qPCR in the atbzip62 (lacking the AtbZIP62 gene) under the same conditions. Our recent study revealed that AtbZIP62 TF positively regulates the expression of AtPYD1 (Pyrimidine 1, a key gene of the de novo pyrimidine biosynthesis pathway know to share a common substrate with the N metabolic pathway). For this reason, we included the atpyd1-2 mutant in the study. Our findings revealed that the expression of AtNPF6.2/NRT1.4, AtNPF6.3/NRT1.1 and AtNRT2.2 was similarly regulated in atzbip62 and atpyd1-2 but differentially regulated between the mutant lines and Col-0. Meanwhile, the expression pattern of AtNRT2.1 in atbzip62 was similar to that observed in Col-0 but was suppressed in atpyd1-2. The breakthrough is that AtNRT2.2 had the highest expression level in Col-0, while being suppressed in atbzip62 and atpyd1-2. Furthermore, the transcript accumulation of AtGLU1 and AtGLU2 showed differential regulation patterns between Col-0 and atbzip62, and atpyd1-2. Therefore, results suggest that of all tested NO3 transporters, AtNRT2.2 is thought to play a preponderant role in contributing to NO3 transport events under the regulatory influence of AtbZIP62 TF in response to drought stress.


2000 ◽  
Vol 35 (4) ◽  
pp. 809-817 ◽  
Author(s):  
ADELSON PAULO ARAÚJO ◽  
MARCELO GRANDI TEIXEIRA ◽  
DEJAIR LOPES DE ALMEIDA

The genotypic differences on growth and yield of common bean (Phaseolus vulgaris L.) in response to P supply were evaluated in a field experiment under biological N2 fixation. Eight cultivars were grown at two levels of applied P (12 and 50 kg ha-1 of P -- P1 and P2 respectively), in randomized block design in factorial arrangement. Vegetative biomass was sampled at three ontogenetic stages. The effects of genotype and phosphorus were significant for most traits, but not the genotype ´ phosphorus interaction. The cultivars presented different patterns of biomass production and nutrient accumulation, particularly on root system. At P1, P accumulation persisted after the beginning of pod filling, and P translocation from roots to shoots was lower. The nodule senescence observed after flowering might have reduced N2 fixation during pod filling. The responses of vegetative growth to the higher P supply did not reflect with the same magnitude on yield, which increased only 6% at P2; hence the harvest index was lower at P2. The cultivars with highest yields also presented lower grain P concentrations. A sub-optimal supply of N could have limited the expression of the yield potential of cultivars, reducing the genotypic variability of responses to P levels.


2017 ◽  
Vol 4 ◽  
Author(s):  
Víctor Moreira-Coello ◽  
Beatriz Mouriño-Carballido ◽  
Emilio Marañón ◽  
Ana Fernández-Carrera ◽  
Antonio Bode ◽  
...  

2000 ◽  
Vol 48 (1) ◽  
pp. 47-59 ◽  
Author(s):  
K. Hairiah ◽  
M. Van Noordwijk ◽  
G. Cadisch

Sign in / Sign up

Export Citation Format

Share Document