nitrogen acquisition
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 55)

H-INDEX

42
(FIVE YEARS 5)

Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 84
Author(s):  
Xueming Ren ◽  
Ruxin Guo ◽  
Mazarin Akami ◽  
Changying Niu

Nitrogen is usually a restrictive nutrient that affects the growth and development of insects, especially of those living in low nitrogen nutrient niches. In response to the low nitrogen stress, insects have gradually developed symbiont-based stress response strategies—biological nitrogen fixation and nitrogenous waste recycling—to optimize dietary nitrogen intake. Based on the above two patterns, atmospheric nitrogen or nitrogenous waste (e.g., uric acid, urea) is converted into ammonia, which in turn is incorporated into the organism via the glutamine synthetase and glutamate synthase pathways. This review summarized the reaction mechanisms, conventional research methods and the various applications of biological nitrogen fixation and nitrogenous waste recycling strategies. Further, we compared the bio-reaction characteristics and conditions of two strategies, then proposed a model for nitrogen provisioning based on different strategies.


2022 ◽  
Author(s):  
Mark A. Anthony ◽  
Thomas W. Crowther ◽  
Sietse van der Linde ◽  
Laura M. Suz ◽  
Martin I. Bidartondo ◽  
...  

AbstractMost trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ang Li ◽  
Chirag Parsania ◽  
Kaeling Tan ◽  
Richard B. Todd ◽  
Koon Ho Wong

AbstractNutrient acquisition is essential for all organisms. Fungi regulate their metabolism according to environmental nutrient availability through elaborate transcription regulatory programs. In filamentous fungi, a highly conserved GATA transcription factor AreA and its co-repressor NmrA govern expression of genes involved in extracellular breakdown, uptake, and metabolism of nitrogen nutrients. Here, we show that the Aspergillus nidulans PnmB protease is a moonlighting protein with extracellular and intracellular functions for nitrogen acquisition and metabolism. PnmB serves not only as a secreted protease to degrade extracellular nutrients, but also as an intracellular protease to control the turnover of the co-repressor NmrA, accelerating AreA transcriptional activation upon nitrogen starvation. PnmB expression is controlled by AreA, which activates a positive feedback regulatory loop. Hence, we uncover a regulatory mechanism in the well-established controls determining the response to nitrogen starvation, revealing functional evolution of a protease gene for transcriptional regulation and extracellular nutrient breakdown.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Hao Zhang ◽  
Ying Sun ◽  
Qinglu Zeng ◽  
Sean A. Crowe ◽  
Haiwei Luo

Prochlorococcus are the most abundant photosynthetic organisms in the modern ocean. A massive DNA loss event occurred in their early evolutionary history, leading to highly reduced genomes in nearly all lineages, as well as enhanced efficiency in both nutrient uptake and light absorption. The environmental landscape that shaped this ancient genome reduction, however, remained unknown. Through careful molecular clock analyses, we established that this Prochlorococcus genome reduction occurred during the Neoproterozoic Snowball Earth climate catastrophe. The lethally low temperature and exceedingly dim light during the Snowball Earth event would have inhibited Prochlorococcus growth and proliferation, and caused severe population bottlenecks. These bottlenecks are recorded as an excess of deleterious mutations accumulated across genomic regions and inherited by descendant lineages. Prochlorococcus adaptation to extreme environmental conditions during Snowball Earth intervals can be inferred by tracing the evolutionary paths of genes that encode key metabolic potential. Key metabolic innovation includes modified lipopolysaccharide structure, strengthened peptidoglycan biosynthesis, the replacement of a sophisticated circadian clock with an hourglass-like mechanism that resets daily for dim light adaption and the adoption of ammonia diffusion as an efficient membrane transporter-independent mode of nitrogen acquisition. In this way, the Neoproterozoic Snowball Earth event may have altered the physiological characters of Prochlorococcus , shaping their ecologically vital role as the most abundant primary producers in the modern oceans.


2021 ◽  
pp. 110767
Author(s):  
Marta Gallart ◽  
Chanyarat Paungfoo-Lonhienne ◽  
Stephen J. Trueman

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aaron Mullins ◽  
Thomas Chouvenc ◽  
Nan-Yao Su

AbstractIntrinsic dinitrogen (N2) fixation by diazotrophic bacteria in termite hindguts has been considered an important pathway for nitrogen acquisition in termites. However, studies that supported this claim focused on measuring instant N2 fixation rates and failed to address their relationship with termite colony growth and reproduction over time. We here argue that not all wood-feeding termites rely on symbiotic diazotrophic bacteria for colony growth. The present study looks at dietary nitrogen acquisition in a subterranean termite (Rhinotermitidae, Coptotermes). Young termite colonies reared with wood and nitrogen-rich organic soil developed faster, compared to those reared on wood and inorganic sand. More critically, further colony development was arrested if access to organic soil was removed. In addition, no difference of relative nitrogenase expression rates was found when comparing the hindguts of termites reared between the two conditions. We therefore propose that subterranean termite (Rhinotermitidae) colony growth is no longer restricted to metabolically expensive intrinsic N2 fixation, as the relationship between diazotrophic bacteria and subterranean termites may primarily be trophic rather than symbiotic. Such reliance of Rhinotermitidae on soil microbial decomposition activity for optimal colony growth may also have had a critical mechanistic role in the initial emergence of Termitidae.


2021 ◽  
Vol 9 ◽  
Author(s):  
Paula Vico ◽  
Andrés Iriarte ◽  
Sylvia Bonilla ◽  
Claudia Piccini

Raphidiopsis raciborskii is a toxic, invasive bacteria with a defined biogeographic pattern attributed to the generation of ecotypes subjected to local environmental filters and to phenotypic plasticity. The interactions taking place between the cyanobacterium and the other bacteria inhabiting the external polysaccharide-rich matrix surrounding the cells, or phycosphere, may be ecotype-specific and would have different influence on the carbon and nutrient cycling in the ecosystem. Here, we describe the bacterial community or microbiome (assessed by 16S rRNA metagenomics) associated to two R. raciborskii strains that have been described as different ecotypes: the saxitoxin-producer MVCC19 and the non-toxic LB2897. Our results showed that both ecotypes share 50% of their microbiomes and differ in their dominant taxa. The taxon having the highest abundance in the microbiome of MVCC19 was Neorhizobium (22.5% relative abundance), while the dominant taxon in LB2897 was the Planctomycetes SM1A02 (26.2% relative abundance). These groups exhibit different metabolic capabilities regarding nitrogen acquisition (symbiotic nitrogen-fixing in Neorhizobium vs. anammox in SM1A02), suggesting the existence of ecotype-specific microbiomes that play a relevant role in cyanobacterial niche-adaptation. In addition, as saxitoxin and analogues are nitrogen-rich (7 atoms per molecule), we hypothesise that saxitoxin-producing R. raciborskii benefits from external sources of nitrogen provided by the microbiome bacteria. Based on these findings, we propose that the mechanisms involved in the assembly of the cyanobacterial microbiome community are ecotype-dependent.


Rhizosphere ◽  
2021 ◽  
pp. 100447
Author(s):  
Yuqiang Tian ◽  
Weijian Sun ◽  
Minghua Song ◽  
Yan Zhao ◽  
Shuhai Wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document