Root exudates induce rhizosphere effect benefits for plant N use efficiency and fitness of relatives for Glycine max

2021 ◽  
Author(s):  
Jie Li ◽  
Weilin Li ◽  
Xingliang Xu
2021 ◽  
Author(s):  
Jie Li ◽  
Weilin Li ◽  
Xingliang Xu

Abstract Aims Kin recognition has been used to explain plant interactions among siblings, but the morphological-based conclusions are various and the mechanism is still fuzzy. Here, we tested the rhizosphere effect of plant kin recognition based on soil nitrogen (N) cycling resulted from root exudates, combined with plant fitness, morphological and physiological performances to examine how plants respond to kin neighbors. Methods One factorial experimental design of relatedness including either sibling or strangers of Glycine max was constructed. After growing about three months, plant morphological traits including plant height, specific leaf area (SLA) and root length as well as plant biomass; physiological traits including root activity, nitrate reductase (NR) activity and contents of chlorophyll; plant N use efficiency of each individuals were measured. Moreover, the production rate of root exudates carbon (C) and N, soil microbial biomass C and N, as well as genes amoA-AOAs, amoA-AOBs, nifH, nirK, nirS and nosZ genes related with soil N were assayed. Finally, the abundances of soil archaea, bacteria and fungi were quantified. Results Our study showed significant higher plant fitness and physiological growth and N use efficiency in siblings than strangers. The root secreted C rather than secreted N was sensitive to kin identity of G. max. Moreover, higher root secreted C quantity of sibling also ignited increasing of soil microbial biomass especially the abundance of Archaea community, and the abundance of amoa-AOAs gene compared to stranger soils. Finally, siblings increased the supply of soil available N and N use efficiency compared to strangers. Conclusions The rhizosphere changes induced by root exudation resulted in increased fitness and greater resource use efficiency among siblings compared to strangers. These findings suggest that the rhizosphere effect of soil microbial changes and soil N cycling and transformation triggered by the root-exuded C, could be a potential underground feedback mechanism for multiple kin recognition responses.


2021 ◽  
Vol 13 (12) ◽  
pp. 2349
Author(s):  
Jingchun Ji ◽  
Jianli Liu ◽  
Jingjing Chen ◽  
Yujie Niu ◽  
Kefan Xuan ◽  
...  

Topdressing accounts for approximately 40% of the total nitrogen (N) application of winter wheat on the Huang-Huai-Hai Plain in China. However, N use efficiency of topdressing is low due to the inadaptable topdressing method used by local farmers. To improve the N use efficiency of winter wheat, an optimization method for topdressing (THP) is proposed that uses unmanned aerial vehicle (UAV)-based remote sensing to accurately acquire the growth status and an improved model for growth potential estimation and optimization of N fertilizer amount for topdressing (NFT). The method was validated and compared with three other methods by a field experiment: the conventional local farmer’s method (TLF), a nitrogen fertilization optimization algorithm (NFOA) proposed by Raun and Lukina (TRL) and a simplification introduced by Li and Zhang (TLZ). It shows that when insufficient basal fertilizer was provided, the proposed method provided as much NFT as the TLF method, i.e., 25.05% or 11.88% more than the TRL and TLZ methods and increased the yields by 4.62% or 2.27%, respectively; and when sufficient basal fertilizer was provided, the THP method followed the TRL and TLZ methods to reduce NFT but maintained as much yield as the TLF method with a decrease of NFT by 4.20%. The results prove that THP could enhance crop production under insufficient N preceding conditions by prescribing more fertilizer and increase nitrogen use efficiency (NUE) by lowering the fertilizer amount when enough basal fertilizer is provided.


2009 ◽  
Vol 45 (3) ◽  
pp. 275-286 ◽  
Author(s):  
LIMEI ZHAO ◽  
LIANGHUAN WU ◽  
YONGSHAN LI ◽  
XINGHUA LU ◽  
DEFENG ZHU ◽  
...  

SUMMARYField experiments were conducted in 2005 and 2006 to investigate the impacts of alternative rice cultivation systems on grain yield, water productivity, N uptake and N use efficiency (ANUE, agronomic N use efficiency; PFP, partial factor productivity of applied N). The trials compared the practices used with the system of rice intensification (SRI) and traditional flooding (TF). The effects of different N application rates (0, 80, 160 and 240 kg ha−1) and of N rates interacting with the cultivation system were also evaluated. Resulting grain yields with SRI ranged from 5.6 to 7.3 t ha−1, and from 4.1 to 6.4 t ha−1 under TF management. On average, grain yields under SRI were 21% higher in 2005 and 22% higher in 2006 than with TF. Compared with TF, SRI plots had higher harvest index across four fertilizer N rates in both years. However, there was no significance difference in above-ground biomass between two cultivation systems in either year. ANUE was increased significantly under SRI at 80 kg N ha−1 compared with TF, while at higher N application rates, ANUE with SRI was significantly lower than TF. Compared with TF, PFP under SRI was higher across all four N rates in both years, although the difference at 240 kg N ha−1 was not significant. As N rate increased, the ANUE and PFP under both SRI and TF significantly decreased. Reduction in irrigation water use with SRI was 40% in 2005 and 47% in 2006, and water use efficiency, both total and from irrigation, were significantly increased compared to TF. With both SRI and TF, the highest N application was associated with decreases in grain yield, N use efficiency and water use efficiency. This is an important finding given current debates whether N application rates in China are above the optimum, especially considering consequences for soil and water resources. Cultivation system, N rates and their interactions all produced significant differences in this study. Results confirmed that optimizing fertilizer N application rates under SRI is important to increase yield, N use efficiency and water use efficiency.


Author(s):  
Juliane S. P. Costa ◽  
Rubia D. Mantai ◽  
José A. G. da Silva ◽  
Osmar B. Scremin ◽  
Emilio G. Arenhardt ◽  
...  

ABSTRACT Single or split nitrogen (N) supply can maximize the expression of wheat yield indicators. The objective of the study was to evaluate the greater N use efficiency on wheat yield indicators by the single and split N supply under favorable and unfavorable year conditions to the crop in succession system of high and reduced residual N release. The study was conducted in 2014 and 2015, in a randomized complete block design with four replicates in a 4 x 3 factorial, for N-fertilizer doses (0, 30, 60, 120 kg ha-1) and supply forms [full dose (100%) in the phenological stage V3 (third expanded leaf); split dose (70 and 30%) in the phenological stages V3/V6 (third and sixth expanded leaves, respectively) and; split dose (70 and 30%) in the phenological stages V3/R1 (third expanded leaf and early grain filling)], respectively, in soybean/wheat and maize/wheat cultivation systems. The highest N use efficiency for wheat yield was obtained with the single dose supply in favorable year of temperature and rainfall and with the split dose in the V3/V6 stages in unfavorable year, regardless of the succession system of high and reduced residual N release.


2002 ◽  
Vol 2 (1) ◽  
pp. 4-8
Author(s):  
Mahmood-ul-Hassan . ◽  
Taj Muhammad . ◽  
Saeed Ahmad . ◽  
Muhammad Iqbal . ◽  
Abdul Karim . ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document