n deficiency
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 58)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Qi Chen ◽  
Yanpeng Wang ◽  
Zhijun Zhang ◽  
Xiaomin Liu ◽  
Chao Li ◽  
...  

Arginine plays an important role in the nitrogen (N) cycle because it has the highest ratio of N to carbon among amino acids. In recent years, there has been increased research interest in improving the N use of plants, reducing the use of N fertilizer, and enhancing the tolerance of plants to N deficiency. Here, the function of arginine in the growth of apple (Malus hupehensis) under N deficiency was explored. The application of 100 μmol L–1 arginine was effective for alleviating N-deficiency stress. Exogenous arginine promoted the absorption and use of N, phosphorus (P), and potassium (K) under low N stress. The net photosynthetic rate, maximal photochemical efficiency of photosystem II, and chlorophyll content were higher in treated plants than in control plants. Exogenous arginine affected the content of many metabolites, and the content of many amino acids with important functions was significantly increased, such as glutamate and ornithine, which play an important role in the urea cycle. Half of the metabolites were annotated to specialized metabolic pathways, including the synthesis of phenolic substances, flavonoids, and other substances with antioxidant activity. Our results indicate that arginine promotes the plant photosynthetic capacity and alters amino acid metabolism and some antioxidants including phenolic substances and flavonoids to improve the tolerance of apple to N deficiency, possibly through the improvement of arginine content, and the absorption of mineral.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min Chen ◽  
Yiyi Yin ◽  
Lichun Zhang ◽  
Xiaoqian Yang ◽  
Tiantian Fu ◽  
...  

Nitrogen (N) is one of the most crucial elements for plant growth and development. However, little is known about the metabolic regulation of trees under conditions of N deficiency. In this investigation, gas chromatography-mass spectrometry (GC-MS) was used to determine global changes in metabolites and regulatory pathways in Populus tomentosa. Thirty metabolites were found to be changed significantly under conditions of low-N stress. N deficiency resulted in increased levels of carbohydrates and decreases in amino acids and some alcohols, as well as some secondary metabolites. Furthermore, an RNA-sequencing (RNA-Seq) analysis was performed to characterize the transcriptomic profiles, and 1,662 differentially expressed genes were identified in P. tomentosa. Intriguingly, four pathways related to carbohydrate metabolism were enriched. Genes involved in the gibberellic acid and indole-3-acetic acid pathways were found to be responsive to low-N stress, and the contents of hormones were then validated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Coordinated metabolomics and transcriptomics analysis revealed a pattern of co-expression of five pairs of metabolites and unigenes. Overall, our investigation showed that metabolism directly related to N deficiency was depressed, while some components of energy metabolism were increased. These observations provided insights into the metabolic and molecular mechanisms underlying the interactions of N and carbon in poplar.


Author(s):  
Shamsu Ado Zakari ◽  
Syed Hassan Raza Zaidi ◽  
Mustapha Sunusi ◽  
Kabiru Dawaki Dauda

Abstract Background Leaf senescence occurs in an age-dependent manner, but the rate and timing of leaf senescence may be influenced by various biotic and abiotic factors. In the course of stress, the function, composition, and different components of photosynthetic apparatus occur to be synthesized homogeneously or degraded paradoxically due to different senescence-related processes. Nitrogen (N) deficiency is one of the critical environmental factors that induce leaf senescence, and its incidence may curtail leaf photosynthetic function and markedly alter the genetic information of plants that might result in low grain yield. However, the physiological and genetic mechanism underlying N deficiency regulates premature senescence, and flag leaf function, ROS homeostasis, and intercellular sugar concentration in rice during grain filling are not well understood. In this paper, Zhehui7954 an excellent indica restorer line (wildtype) and its corresponding mutant (psf) with the premature senescence of flag leaves were used to study the effect of different N supplies in the alteration of physiological and biochemical components of flag leaf organ and its functions during grain filling. Results The results showed that the psf mutant appeared to be more susceptible to the varying N supply levels than WT. For instance, the psf mutant showed considerably lower Pn, Chl a, Chl b, and Car contents than its WT. N deficiency (LN) decreased leaves photosynthetic activities, N metabolites, but significantly burst O2•−, H2O2, and relative conductivity (R1/R2) concentrations, which was consistent with the expression levels of senescence-associated genes. Sucrose, glucose, and C/N ratio concentrations increased with a decrease in N level, which was closely associated with N and non-structural carbohydrate translocation rates. Increases in POD activity were positively linked with the senescence-related enhancement of ROS generation under LN conditions, whereas, SOD, CAT, and APX activities showed opposite trends. High N (HN) supply significantly inhibits the transcripts of carbohydrate biosynthesis genes, while N assimilation gene transcripts gradually increased along with leaf senescence. The psf mutant had a relatively higher grain yield under HN treatment than LN, while WT had a higher grain yield under MN than HN and LN. Conclusions This work revealed that the C/N ratio and ROS undergo a gradual increase driven by interlinking positive feedback, providing a physiological framework connecting the participation of sugars and N assimilation in the regulation of leaf senescence. These results could be useful for achieving a higher yield of rice production by appropriate N supply and plant senescence regulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maaya Igarashi ◽  
Yan Yi ◽  
Katsuya Yano

An increase in plant biomass under elevated CO2 (eCO2) is usually lower than expected. N-deficiency induced by eCO2 is often considered to be a reason for this. Several hypotheses explain the induced N-deficiency: (1) eCO2 inhibits nitrate assimilation, (2) eCO2 lowers nitrate acquisition due to reduced transpiration, or (3) eCO2 reduces plant N concentration with increased biomass. We tested them using C3 (wheat, rice, and potato) and C4 plants (guinea grass, and Amaranthus) grown in chambers at 400 (ambient CO2, aCO2) or 800 (eCO2) μL L−1 CO2. In most species, we could not confirm hypothesis (1) with the measurements of plant nitrate accumulation in each organ. The exception was rice showing a slight inhibition of nitrate assimilation at eCO2, but the biomass was similar between the nitrate and urea-fed plants. Contrary to hypothesis (2), eCO2 did not decrease plant nitrate acquisition despite reduced transpiration because of enhanced nitrate acquisition per unit transpiration in all species. Comparing to aCO2, eCO2 remarkably enhanced water-use efficiency, especially in C3 plants, decreasing water demand for CO2 acquisition. As our results supported hypothesis (3) without any exception, we then examined if lowered N concentration at eCO2 indeed limits the growth using C3 wheat and C4 guinea grass under various levels of nitrate-N supply. While eCO2 significantly increased relative growth rate (RGR) in wheat but not in guinea grass, each species increased RGR with higher N supply and then reached a maximum as no longer N was limited. To achieve the maximum RGR, wheat required a 1.3-fold N supply at eCO2 than aCO2 with 2.2-fold biomass. However, the N requirement by guinea grass was less affected by the eCO2 treatment. The results reveal that accelerated RGR by eCO2 could create a demand for more N, especially in the leaf sheath rather than the leaf blade in wheat, causing N-limitation unless the additional N was supplied. We concluded that eCO2 amplifies N-limitation due to accelerated growth rate rather than inhibited nitrate assimilation or acquisition. Our results suggest that plant growth under higher CO2 will become more dependent on N but less dependent on water to acquire both CO2 and N.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zheng-He Lin ◽  
Chang-Song Chen ◽  
Qiu-Sheng Zhong ◽  
Qi-Chun Ruan ◽  
Zhi-Hui Chen ◽  
...  

Abstract Background Nitrogen (N) fertilizer is commonly considered as one of the most important limiting factors in the agricultural production. As a result, a large amount of N fertilizer is used to improve the yield in modern tea production. Unfortunately, the large amount of N fertilizer input has led to increased plant nitrogen-tolerance and decreased amplitude of yield improvement, which results in significant N loss, energy waste and environment pollution. However, the effects of N-deficiency on the metabolic profiles of tea leaves and roots are not well understood. Results In this study, seedlings of Camellia sinensis (L.) O. Kuntze Chunlv 2 were treated with 3 mM NH4NO3 (Control) or without NH4NO3 (N-deficiency) for 4 months by sandy culture. The results suggested that N-deficiency induced tea leaf chlorosis, impaired biomass accumulation, decreased the leaf chlorophyll content and N absorption when they were compared to the Control samples. The untargeted metabolomics based on GC-TOF/MS approach revealed a discrimination of the metabolic profiles between N-deficient tea leaves and roots. The identification and classification of the altered metabolites indicated that N deficiency upregulated the relative abundances of most phenylpropanoids and organic acids, while downregulated the relative abundances of most amino acids in tea leaves. Differentially, N-deficiency induced the accumulation of most carbohydrates, organic acids and amino acids in tea roots. The potential biomarkers screened in N-deficient leaves compared to Control implied that N deficiency might reduce the tea quality. Unlike the N-deficient leaves, the potential biomarkers in N-deficient roots indicated an improved stress response might occur in tea roots. Conclusions The results demonstrated N deficiency had different effects on the primary and secondary metabolism in tea leaves and roots. The findings of this study will facilitate a comprehensive understanding of the N-deficient tea plants and provide a valuable reference for the optimized N nutrient management and the sustainable development in the tea plantations.


2021 ◽  
Vol 22 (21) ◽  
pp. 11413
Author(s):  
Jing Ling ◽  
Xing Huang ◽  
Yanxia Jia ◽  
Weiqi Li ◽  
Xudong Zhang

NUTCRACKER (NUC) is a transcription factor expressed in multiple tissues, but little is known about its physiological roles. In this study, we explored the physiological function of NUC with the Arabidopsis knockout, rescue, and overexpression lines. We found that NUC overexpression promoted development at the germination, seedling, and juvenile stages. NUC overexpression increased resistance to nitrogen (N) deficiency stress by increasing the chlorophyll content, suppressing anthocyanin accumulation, and increasing the biomass under N deficiency. In contrast, the absence of NUC did not affect such characteristics. N deficiency significantly increased the expression of NUC in leaves but did not affect the expression of NUC in roots. The overexpression of NUC promoted primary root length under both normal and N deficiency conditions. Furthermore, we found that the N-responsive and lateral-root-related genes TGA1 and NRT2.4 had NUC-binding sites in their promoter regions and that their expression was upregulated by NUC under N deficiency. The overexpression of the NUC increased the number and length of the lateral roots under N deficiency through inducible promotion. Multiple lines of investigation suggest that the regulatory function of the NUC could be bypassed through its redundant MAGPIE (MGP) when the NUC is absent. Our findings provide novel insight into NUC’s functions and will assist efforts to improve plants’ development and resistance to nutrient stresses.


2021 ◽  
Author(s):  
Zheng-He Lin ◽  
Chang-Song Chen ◽  
Qiu-Sheng Zhong ◽  
Qi-Chun Ruan ◽  
Zhi-Hui Chen ◽  
...  

Abstract Background: Nitrogen (N) fertilizer is commonly considered as one of the most omportant limiting factors in the agricultural production. As a result, modern tea production, a large amount of N fertilizer is used to improve the yield. Unfortunately, the large amount of N fertilizer input has led to increased plant nitrogen-tolerance and decreased amplitude of yield improvement, which results in significant N loss, energy waste and environment pollution.However, the effects of N-deficiency on the metabolic profiles of leaves and roots are not well understood.Results: In the study, seedlings of Camellia sinensis (L.) O. Kuntze cv. Chunlv 2 were treated with 3 mM NH4NO3(as Control)or without NH4NO3(as N-deficiency)for 4 months by sandy culture. The results suggested the N-deficiency induced tea leaf chlorosis, impaired biomass accumulation, decreased the leaf chlorophyll content and N absorption compared to Control. The untargeted metabolomics based on GC-TOF/MS approach revealed discrimination of the metabolic profiles between N-deficient tea leaves and roots. The identification and classification of the altered metabolites indicated the N deficiency upregulated the relative abundances of most phenylpropanoids, organic acids while downregulated the relative abundances of most amino acids in the tea leaves. Differentially, N-deficiency induced the accumulation of most carbohydrates, organic acids and amino acids in the tea roots. The potential biomarkers screened in the N-deficient leaves compared to Control reflected the N deficiency reduced the tea quality. Unlike the N-deficient leaves, the potential biomarkers in the N-deficient roots implied an improved stress response. Conclusions:The results demonstrated the N deficiency had different effects on the primary and secondary metabolic alteration of tea leaves and roots. The findings of the study will facilitate a comprehensive understanding of the N-deficient tea plants and provide a valuable reference for the optimized N nutrient management in the tea plantations.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1962
Author(s):  
Kewalee Jantapo ◽  
Watcharapong Wimonchaijit ◽  
Wenfei Wang ◽  
Juthamas Chaiwanon

Root growth depends on cell proliferation and cell elongation at the root meristem, which are controlled by plant hormones and nutrient availability. As a foraging strategy, rice (Oryza sativa L.) grows longer roots when nitrogen (N) is scarce. However, how the plant steroid hormone brassinosteroid (BR) regulates rice root meristem development and responses to N deficiency remains unclear. Here, we show that BR has a negative effect on meristem size and a dose-dependent effect on cell elongation in roots of rice seedlings treated with exogenous BR (24-epicastasterone, ECS) and the BR biosynthesis inhibitor propiconazole (PPZ). A genome-wide transcriptome analysis identified 4110 and 3076 differentially expressed genes in response to ECS and PPZ treatments, respectively. The gene ontology (GO) analysis shows that terms related to cell proliferation and cell elongation were enriched among the ECS-repressed genes. Furthermore, microscopic analysis of ECS- and PPZ-treated roots grown under N-sufficient and N-deficient conditions demonstrates that exogenous BR or PPZ application could not enhance N deficiency-mediated root elongation promotion as the treatments could not promote root meristem size and cell elongation simultaneously. Our study demonstrates that optimal levels of BR in the rice root meristem are crucial for optimal root growth and the foraging response to N deficiency.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1859
Author(s):  
Wei-Tao Huang ◽  
Yi-Zhi Xie ◽  
Xu-Feng Chen ◽  
Jiang Zhang ◽  
Huan-Huan Chen ◽  
...  

Limited data are available on the physiological responses of Citrus to nitrogen (N) deficiency. ‘Xuegan’ (Citrus sinensis (L.) Osbeck) and ‘Shantian pummelo’ (Citrus grandis (L.) Osbeck) seedlings were fertilized with nutrient solution at a N concentration of 0, 5, 10, 15 or 20 mM for 10 weeks. N deficiency decreased N uptake and N concentration in leaves, stems and roots and disturbed nutrient balance and homeostasis in plants, thus inhibiting plant growth, as well as reducing photosynthetic pigment levels and impairing thylakoid structure and photosynthetic electron transport chain (PETC) in leaves, hence lowering CO2 assimilation. The imbalance of nutrients intensified N deficiency’s adverse impacts on biomass, PETC, CO2 assimilation and biosynthesis of photosynthetic pigments. Citrus displayed adaptive responses to N deficiency, including (a) elevating the distributions of N and other elements in roots, as well as root dry weight (DW)/shoot DW ratio and root-surface-per-unit volume and (b) improving photosynthetic N use efficiency (PNUE). In general, N deficiency had less impact on biomass and photosynthetic pigment levels in C. grandis than in C. sinensis seedlings, demonstrating that the tolerance of C. grandis seedlings to N deficiency was slightly higher than that of C. sinensis seedlings, which might be related to the higher PNUE of the former.


Sign in / Sign up

Export Citation Format

Share Document