Nature of Cu active sites in zeolite-based catalysts for selective catalytic oxidation of methane

2019 ◽  
Vol 45 (12) ◽  
pp. 5849-5861
Author(s):  
Han Sun ◽  
Chuntong Liu ◽  
Haijun Chen
2010 ◽  
Vol 160-162 ◽  
pp. 1285-1290
Author(s):  
Chang Mao Hung

The behavior of the ammonia (NH3) oxidation was by selective catalytic oxidation (SCO) over a nanosized Pt-Rh composite catalyst in a tubular fixed-bed flow quartz reactor (TFBR) at temperatures between 423 and 673 K. The catalysts surface properties were characterized using UV-Vis and TEM. The experimental results show high activities for NH3 removal was achieved during catalytic oxidation over the Pt-Rh catalyst at 673 K with an oxygen content of 4%. N2 was the main product in the NH3-SCO process over the nanosized Pt-Rh composite catalyst. These results also verify that the Pt-Rh metals on catalyst surfaces, resulting in the formation of the remarkable catalytically active sites at the metal-support interface in the reduction of NH3 in this process. In addition, the nanosized Pt-Rh composite-induced cytotoxicity testing was mainly applied to the human lung MRC-5 cell line and the percentage of cell survival was determined by MTS analysis in vitro. For nanosized Pt-Rh composite, only minor cytotoxicity was observed when human lung cells were exposed.


2020 ◽  
Author(s):  
Lanlan Sun ◽  
Yu Wang ◽  
Chuanming Wang ◽  
Zaiku Xie ◽  
Naijia Guan ◽  
...  

<p>The selective oxidation of methane to methanol is a dream reaction of direct methane functionalization, which remains a key challenge in catalysis and a hot issue of controversy. Herein, we report the water-involved methane selective catalytic oxidation by dioxygen over copper-zeolites. At 573 K, a state-of-the-art methanol space-time yield of 543 mmol/mol<sub>Cu</sub>/h with methanol selectivity of 91 % is achieved with Cu-CHA catalyst. Temperature-programmed surface reactions with isotope labelling determine water as the dominating oxygen and hydrogen source of hydroxyl in methanol while dioxygen participates in the reaction <a></a><a>through reducing to water</a>. Spectroscopic analyses reveal the fast redox cycle of Cu<sup>2+</sup>-Cu<sup>+</sup>-Cu<sup>2+</sup> during methane selective oxidation, which is closely related to the high catalytic activity of Cu-CHA. Density functional theory calculations suggest that both CuOH monomer and dimer in Cu-CHA can catalyze the selective oxidation of methane to methanol with Cu-OOH as the key reaction intermediate, and meanwhile, various copper sites undergo interconversion under reaction conditions.<br></p>


2004 ◽  
Vol 45 (4) ◽  
pp. 589-597 ◽  
Author(s):  
S. N. Pavlova ◽  
N. N. Sazonova ◽  
V. A. Sadykov ◽  
O. I. Snegurenko ◽  
V. A. Rogov ◽  
...  

2020 ◽  
Author(s):  
Lanlan Sun ◽  
Yu Wang ◽  
Chuanming Wang ◽  
Zaiku Xie ◽  
Naijia Guan ◽  
...  

<p>The selective oxidation of methane to methanol is a dream reaction of direct methane functionalization, which remains a key challenge in catalysis and a hot issue of controversy. Herein, we report the water-involved methane selective catalytic oxidation by dioxygen over copper-zeolites. At 573 K, a state-of-the-art methanol space-time yield of 543 mmol/mol<sub>Cu</sub>/h with methanol selectivity of 91 % is achieved with Cu-CHA catalyst. Temperature-programmed surface reactions with isotope labelling determine water as the dominating oxygen and hydrogen source of hydroxyl in methanol while dioxygen participates in the reaction <a></a><a>through reducing to water</a>. Spectroscopic analyses reveal the fast redox cycle of Cu<sup>2+</sup>-Cu<sup>+</sup>-Cu<sup>2+</sup> during methane selective oxidation, which is closely related to the high catalytic activity of Cu-CHA. Density functional theory calculations suggest that both CuOH monomer and dimer in Cu-CHA can catalyze the selective oxidation of methane to methanol with Cu-OOH as the key reaction intermediate, and meanwhile, various copper sites undergo interconversion under reaction conditions.<br></p>


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2495
Author(s):  
Daniela Pietrogiacomi ◽  
Maria Cristina Campa ◽  
Ida Pettiti ◽  
Simonetta Tuti ◽  
Giulia Luccisano ◽  
...  

Ni/ZrO2 catalysts, active and selective for the catalytic partial oxidation of methane to syngas (CH4-CPO), were prepared by the dry impregnation of zirconium oxyhydroxide (Zhy) or monoclinic ZrO2 (Zm), calcination at 1173 K and activation by different procedures: oxidation-reduction (ox-red) or direct reduction (red). The characterization included XRD, FESEM, in situ FTIR and Raman spectroscopies, TPR, and specific surface area measurements. Catalytic activity experiments were carried out in a flow apparatus with a mixture of CH4:O2 = 2:1 in a short contact time. Compared to Zm, Zhy favoured the formation of smaller NiO particles, implying a higher number of Ni sites strongly interacting with the support. In all the activated Ni/ZrO2 catalysts, the Ni–ZrO2 interaction was strong enough to limit Ni aggregation during the catalytic runs. The catalytic activity depended on the activation procedures; the ox-red treatment yielded very active and stable catalysts, whereas the red treatment yielded catalysts with oscillating activity, ascribed to the formation of Niδ+ carbide-like species. The results suggested that Ni dispersion was not the main factor affecting the activity, and that active sites for CH4-CPO could be Ni species at the boundary of the metal particles in a specific configuration and nuclearity.


ChemCatChem ◽  
2021 ◽  
Author(s):  
Tobias Falk ◽  
Eko Budiyanto ◽  
Maik Dreyer ◽  
Christin Pflieger ◽  
Daniel Waffel ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 944
Author(s):  
Anil C. Banerjee

Methane (the major component of natural gas) is one of the main energy sources for gas-powered turbines for power generation, and transport vehicles [...]


Sign in / Sign up

Export Citation Format

Share Document