Specific Features of Chemical Interactions in Double-Stage Leaching of a Solid Target Product Formed in Processing of High-Copper Converter Matte

2005 ◽  
Vol 78 (11) ◽  
pp. 1745-1752
Author(s):  
A. V. Vydysh ◽  
M. N. Naftal' ◽  
I. V. Batsunova ◽  
A. F. Petrov
2020 ◽  
pp. 51-56
Author(s):  
A. N. Glazatov ◽  
◽  
M. I. Ryabushkin ◽  
N. V. Danilov ◽  
◽  
...  

This paper describes the test methods that were applied to three ingots of high-copper converter matte with the weight ratio of Cu:Ni ~ 2.3 at Polar Division of PJSC MMC Norilsk Nickel to determine their cooling rate. The obtained results are also discussed. A test heat was done in the converter of the Nadezhdinski Metallurgical Plant, during which the following compositions were closely monitored: that of middlings; that of the finished matte that was discharged at 1,255–1,260 оС and poured in molds at 1,200 and 1,140 оС; and that of metallized matte that was intentionally overheated to 1,285–1,290 оС and poured at 1,200 оС. The cooling time was 82 and 93 hours (for capped ingots). The temperature was monitored with the help of six chromel-alumel thermocouples located at the level of 1,350, 850 and 350 mm from the bottom; three of them in the centre and the other three on a side. The ingots were crushed at the Nickel Plant, and a ~300 kg representative sample with the size of 3 mm was taken from each ingot for flotation tests. Spot samples were taken from the temperature monitoring areas for structural characterization. Based on experimental data, functional dependencies were derived with R2 0.99 that describe the obtained cooling curves. It is shown that due to the use of insulation cap in the structure defining temperature range of 1,150–750 оС, the cooling rate of the ingot top can be considerably decreased (approximately by three times). It is equal to 28–29 оС/h. In the vertically central part of all test ingots — i. e. ~850 mm from the bottom both in the centre and on a side, the cooling rates vary in the range of ~9–10.5 оС/h; in lower monitoring points — i. e. 350 mm from the bottom, they are equal to 24–33 оС/h. The cooling rate of the overheated matte at the top drops to 67 versus 87 оС/h for the uncapped ingot, whereas in the centre and at the bottom it almost remains the same.


ACS Omega ◽  
2020 ◽  
Vol 5 (32) ◽  
pp. 20090-20099
Author(s):  
Wen Tao ◽  
Chuncheng Zhu ◽  
Qian Xu ◽  
Shenggang Li ◽  
Xiaolu Xiong ◽  
...  

2006 ◽  
Vol 19 (107) ◽  
pp. 27-31 ◽  
Author(s):  
Alan Ramić ◽  
Marica Medić-Šarić ◽  
Srećko Turina ◽  
Ivona Jasprica

2020 ◽  
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced ‘quantum chemistry aided retrosynthetic analysis’ (QCaRA), which uses quantum chemical calculations to search systematically for decomposition paths of the target product and propose a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the seemingly most promising path led to the discovery of a synthesis method for the difluoroglycine derivative. The extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.


2020 ◽  
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced ‘quantum chemistry aided retrosynthetic analysis’ (QCaRA), which uses quantum chemical calculations to search systematically for decomposition paths of the target product and propose a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the seemingly most promising path led to the discovery of a synthesis method for the difluoroglycine derivative. The extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.


2019 ◽  
Author(s):  
john andraos

This paper proposes a standardized format for the preparation of process green synthesis reports that can be applied to chemical syntheses of active pharmaceutical ingredients (APIs) of importance to the pharmaceutical industry. Such a report is comprised of the following eight sections: a synthesis scheme, a synthesis tree, radial pentagons and step E-factor breakdowns for each reaction step, a tabular summary of key material efficiency step and overall metrics for a synthesis plan, a mass process block diagram, an energy consumption audit based on heating and cooling reaction and auxiliary solvents, a summary of environmental and safety-hazard impacts based on organic solvent consumption using the Rowan solvent greenness index, and a cycle time process schedule. Illustrative examples of process green synthesis reports are given for the following pharmaceuticals: 5-HT2B and 5-HT7 receptors antagonist (Astellas Pharma), brivanib (Bristol-Myers Squibb), and orexin receptor agonist (Merck). Methods of ranking synthesis plans to a common target product are also discussed using 6 industrial synthesis plans of apixaban (Bristol-Myers Squibb) as a working example. The Borda count method is suggested as a facile and reliable computational method for ranking multiple synthesis plans to a common target product using the following 4 attributes obtained from a process green synthesis report: process mass intensity, mass of sacrificial reagents used per kg of product, input enthalpic energy for solvents, and Rowan solvent greenness index for organic solvents.<br>


Alloy Digest ◽  
1983 ◽  
Vol 32 (1) ◽  

Abstract MUELLER Alloy 3140 is a high-copper alloy with moderate strength, a rich bronze color and excellent corrosion resistance. Its lead content gives it excellent machinability which makes it suitable for screw-machine applications. Its uses include many screw-machine products, decorative hardware, pickling crates and parts to resist severe atmospheric conditions. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-451. Producer or source: Mueller Brass Company.


2019 ◽  
Vol 16 (3) ◽  
pp. 240-250 ◽  
Author(s):  
Suryakanta Swain ◽  
Rabinarayan Parhi ◽  
Bikash Ranjan Jena ◽  
Sitty Manohar Babu

Background: Quality by Design (QbD) is associated with a modern, systematic, scientific and novel approach which is concerned with pre-distinct objectives that not only focus on product, process understanding but also lead to process control. It predominantly signifies the design and product improvement and the manufacturing process in order to fulfill the predefined manufactured goods or final products quality characteristics. It is quite essential to identify the desired and required product performance report, such as Target Product Profile, typical Quality Target Product Profile (QTPP) and Critical Quality Attributes (CQA). Methods: This review highlighted the concepts of QbD design space, for critical material attributes (CMAs) as well as the critical process parameters that can totally affect the CQAs within which the process shall be unaffected thus, consistently manufacturing the required product. Risk assessment tools and design of experiments are its prime components. Results: This paper outlines the basic knowledge of QbD, the key elements; steps as well as various tools for QbD implementation in pharmaceutics field are presented briefly. In addition to this, quite a lot of applications of QbD in numerous pharmaceutical related unit operations are discussed and summarized. Conclusion: This article provides a complete data as well as the roadmap for universal implementation and application of QbD for pharmaceutical products.


Sign in / Sign up

Export Citation Format

Share Document