Local geoid determination based on airborne gravity data

2011 ◽  
Vol 55 (3) ◽  
pp. 515-528 ◽  
Author(s):  
Jitka Hájková
2020 ◽  
Author(s):  
Xiaopeng Li ◽  
Jianliang Huang ◽  
Cornelis Slobbe ◽  
Roland Klees ◽  
Martin Willberg ◽  
...  

<p>The topic of downward continuation (DWC) has been studied for many decades without very conclusive answers on how different methods compare with each other. On the other hand, there are vast amounts of airborne gravity data collected by the GRAV-D project at NGS NOAA of the United States and by many other groups around the world. These airborne gravity data are collected on flight lines where the height of the aircraft actually varies significantly, and this causes challenges for users of the data. A downward continued gravity grid either on the topography or on the geoid is still needed for many applications such as improving the resolution of a local geoid model. Four downward continuation methods, i.e., Residual Least Squares Collocation (RLSC), the Inverse Poisson Integral, Truncated Spherical Harmonic Analysis, and Radial Basis Functions (RBF), are tested on both simulated data sets and real GRAV-D airborne gravity data in a previous joint study between NGS NOAA and CGS NRCan. The study group is further expanded by adding the TU Delft group on RBF and the TUM group on RLSC to incorporate more updated knowledge in the theoretical background and more in-depth discussion on the numerical results. A formal study group will be established inside IAG for providing the best answers for downward continuing airborne gravity data for local gravity field improvement. In this presentation, we review and compare the four methods theoretically and numerically. Simulated and real airborne and terrestrial data are used for the numerical comparison over block MS05 of the GRAV-D project in Colorado, USA, where the 1cm geoid experiment was performed by 15 international teams. The conclusion drawn from this study will advance the use of GRAV-D data for the new North American-Pacific Geopotential Datum of 2022 (NAPGD2022).</p>


2021 ◽  
Author(s):  
Xiaopeng Li ◽  
Jianliang Huang ◽  
Martin Willberg ◽  
Roland Pail ◽  
Cornelis Slobbe ◽  
...  

<p>The theories of downward continuation (DC) have been extensively studied for many decades, during which many different approaches were developed. In real applications, however, researchers often just use one method, probably due to resource limitations or to finish their work, without a rigorous head-to-head comparison with other alternatives. Considering that different methods perform quite differently under various conditions, comparing results from different methods can help a lot for identifying potential problems when dramatic differences occur, and for confirming the correctness of the solutions when results converge together, which is extremely important for real applications such as building official national vertical datums. This paper gives exactly such a case study by recording the collective wisdom recently developed within  the IAG’s study group SC2.4.1. A total of six normally used DC methods, which are SHA (NGS), LSC (DTU Space), Poisson and ADC (NRCan), RBF (DU Delft), and RLSC (TUM), are applied to both simulated data (in the combination of two sampling strategies with three noise levels) and real data in a Colorado-area test bed. The data are downward continued to both surface points and to the reference ellipsoid surface. The surface points are directly evaluated with the observed gravity data on the topography. The ellipsoid points are then transformed into geoid heights according to NRCan’s Stokes-Helmert’s scheme and eventually evaluated at the GNSS/Leveling benchmarks. In this presentation, we will summarize the work done and results obtained by the aforementioned workgroup.</p>


2021 ◽  
Vol 936 (1) ◽  
pp. 012029
Author(s):  
Zahroh Arsy Udama ◽  
Ira Mutiara Anjasmara ◽  
Arisauna Maulidyan Pahlevi ◽  
Anas Sharafeldin Mohamed Osman

Abstract The availability of geoids, especially in survey and mapping activities, is useful for transforming the geometric heights obtained from observations of the Global Navigation Satellite System (GNSS) into orthometric heights that have real physical meanings such as those obtained from waterpass measurements. If a geoid is available, the orthometric heights of points on earth can be determined using the GNSS heighting method. The use of modern survey and mapping instruments based on satellite observations such as GNSS is more efficient in terms of time, effort, and cost compared to the accurate waterpass method. According to the Indonesian Geospatial Information Agency (BIG) it is stated that the application of geoid as a national Vertical Geospatial Reference System has an adequate and ideal category if the accuracy is higher than 15 cm. Recent studies have shown that it is possible to generate local geoid models with centimetre accuracy by utilizing airborne gravity data. We calculate free-air gravity anomaly data is calculated by processing airborne gravity and GNSS data using the Stokes Integral method on AGR software. Next a geoid model is created by calculating the contribution of three components, namely the long wave component represented by the EGM2008 global geoid data model, the shortwave component represented by the Shuttle Radar Topography Mission (SRTM) data and the medium wave component represented by the free-air gravity anomaly data. The geoid model validation was carried out using the geoid fitting method for geoid accuracy by calculating the difference between the gravimetric geoid and the geometric geoid and comparing it with the global geoid model EGM2008 degrees 2190. As a result, the total geoid model accuracy value was determined to be 49.4 cm on gravimetric geoid undulations with a standard deviation of 7.1 cm. Meanwhile, the results of the EGM2008 geoid undulation accuracy test at 2190 degrees resulted in an accuracy of 51.9 cm with a standard deviation of 9.9 cm. These results indicate that the local geoid model from airborne gravity measurement data produces a geoid model with a higher accuracy than the global geoid model EGM2008 degrees 2190. However, the accuracy of the resulting data is still below the BIG standard of 15 cm, so further research is needed to produce a geoid model which conforms to the standard.


2013 ◽  
Vol 341-342 ◽  
pp. 999-1004
Author(s):  
Wei Zhou ◽  
Ti Jing Cai

For low-pass filtering of airborne gravity data processing, elliptic low-pass digital filters were designed and filtering influences of the elliptic filter order, upper limit passband frequency, maximal passband attenuation and minimal stopband attenuation were studied. The results show that the upper limit passband frequency has the greatest effect on filtering among four parameters; the filter order and the maximal passband attenuation have some influence, but instability will increase with larger order; the effect of the minimal stopband attenuation is not obvious when reaching a certain value, which requires a combination of evaluation indicator accuracy to determine the optimal value. The standard deviations of discrepancies between the elliptic filtered gravity anomaly with optimal parameters and the commercial software result are within 1mGal, and the internal accord accuracy along four survey lines after level adjusting is about 0.620mGal.


2012 ◽  
Vol 2 (1) ◽  
pp. 53-64 ◽  
Author(s):  
H. Yildiz ◽  
R. Forsberg ◽  
J. Ågren ◽  
C. Tscherning ◽  
L. Sjöberg

Comparison of remove-compute-restore and least squares modification of Stokes' formula techniques to quasi-geoid determination over the Auvergne test areaThe remove-compute-restore (RCR) technique for regional geoid determination implies that both topography and low-degree global geopotential model signals are removed before computation and restored after Stokes' integration or Least Squares Collocation (LSC) solution. The Least Squares Modification of Stokes' Formula (LSMS) technique not requiring gravity reductions is implemented here with a Residual Terrain Modelling based interpolation of gravity data. The 2-D Spherical Fast Fourier Transform (FFT) and the LSC methods applying the RCR technique and the LSMS method are tested over the Auvergne test area. All methods showed a reasonable agreement with GPS-levelling data, in the order of a 3-3.5 cm in the central region having relatively smooth topography, which is consistent with the accuracies of GPS and levelling. When a 1-parameter fit is used, the FFT method using kernel modification performs best with 3.0 cm r.m.s difference with GPS-levelling while the LSMS method gives the best agreement with GPS-levelling with 2.4 cm r.m.s after a 4-parameter fit is used. However, the quasi-geoid models derived using two techniques differed from each other up to 33 cm in the high mountains near the Alps. Comparison of quasi-geoid models with EGM2008 showed that the LSMS method agreed best in term of r.m.s.


Sign in / Sign up

Export Citation Format

Share Document