scholarly journals The Non-carbonaceous–Carbonaceous Meteorite Dichotomy

2020 ◽  
Vol 216 (4) ◽  
Author(s):  
T. Kleine ◽  
G. Budde ◽  
C. Burkhardt ◽  
T. S. Kruijer ◽  
E. A. Worsham ◽  
...  

Abstract The isotopic dichotomy between non-carbonaceous (NC) and carbonaceous (CC) meteorites indicates that meteorite parent bodies derive from two genetically distinct reservoirs, which presumably were located inside (NC) and outside (CC) the orbit of Jupiter and remained isolated from each other for the first few million years of the solar system. Here we review the discovery of the NC–CC dichotomy and its implications for understanding the early history of the solar system, including the formation of Jupiter, the dynamics of terrestrial planet formation, and the origin and nature of Earth’s building blocks. The isotopic difference between the NC and CC reservoirs is probably inherited from the solar system’s parental molecular cloud and has been maintained through the rapid formation of Jupiter that prevented significant exchange of material from inside (NC) and outside (CC) its orbit. The growth and/or migration of Jupiter resulted in inward scattering of CC bodies, which accounts for the co-occurrence of NC and CC bodies in the present-day asteroid belt and the delivery of presumably volatile-rich CC bodies to the growing terrestrial planets. Earth’s primitive mantle, at least for siderophile elements like Mo, has a mixed NC–CC composition, indicating that Earth accreted CC bodies during the final stages of its growth, perhaps through the Moon-forming giant impactor. The late-stage accretion of CC bodies to Earth is sufficient to account for the entire budget of Earth’s water and highly volatile species.

2012 ◽  
Vol 8 (S293) ◽  
pp. 204-211
Author(s):  
Kevin J. Walsh ◽  
Alessando Morbidelli ◽  
Sean N. Raymond ◽  
David P. O'Brien ◽  
Avi M. Mandell

AbstractA persistent difficulty in terrestrial planet formation models is creating Mars analogs with the appropriate mass: Mars is typically an order of magnitude too large in simulations. Some recent work found that a small Mars can be created if the planetesimal disk from which the planets form has an outermost edge at 1.0 AU. However, that work and no previous work could produce a truncation of the planetesimal disk while also explaining the mass and structure of the asteroid belt. We show that gas-driven migration of Jupiter inward to 1.5 AU, before its subsequent outward migration, can truncate the disk and repopulate the asteroid belt. This dramatic migration history of Jupiter suggests that the dynamical behavior of our giant planets was more similar to that inferred for extra-solar planets than previously thought, as both have been characterised by substantial radial migration.


2014 ◽  
Vol 9 (S310) ◽  
pp. 194-203 ◽  
Author(s):  
Sean N. Raymond ◽  
Alessandro Morbidelli

AbstractThe “Grand Tack” model proposes that the inner Solar System was sculpted by the giant planets' orbital migration in the gaseous protoplanetary disk. Jupiter first migrated inward then Jupiter and Saturn migrated back outward together. If Jupiter's turnaround or “tack” point was at ~ 1.5 AU the inner disk of terrestrial building blocks would have been truncated at ~ 1 AU, naturally producing the terrestrial planets' masses and spacing. During the gas giants' migration the asteroid belt is severely depleted but repopulated by distinct planetesimal reservoirs that can be associated with the present-day S and C types. The giant planets' orbits are consistent with the later evolution of the outer Solar System.Here we confront common criticisms of the Grand Tack model. We show that some uncertainties remain regarding the Tack mechanism itself; the most critical unknown is the timing and rate of gas accretion onto Saturn and Jupiter. Current isotopic and compositional measurements of Solar System bodies – including the D/H ratios of Saturn's satellites – do not refute the model. We discuss how alternate models for the formation of the terrestrial planets each suffer from an internal inconsistency and/or place a strong and very specific requirement on the properties of the protoplanetary disk.We conclude that the Grand Tack model remains viable and consistent with our current understanding of planet formation. Nonetheless, we encourage additional tests of the Grand Tack as well as the construction of alternate models.


1974 ◽  
Vol 3 ◽  
pp. 489-489
Author(s):  
M. W. Ovenden

AbstractThe intuitive notion that a satellite system will change its configuration rapidly when the satellites come close together, and slowly when they are far apart, is generalized to ‘The Principle of Least Interaction Action’, viz. that such a system will most often be found in a configuration for which the time-mean of the action associated with the mutual interaction of the satellites is a minimum. The principle has been confirmed by numerical integration of simulated systems with large relative masses. The principle lead to the correct prediction of the preference, in the solar system, for nearly-commensurable periods. Approximate methods for calculating the evolution of an actual satellite system over periods ˜ 109 yr show that the satellite system of Uranus, the five major satellites of Jupiter, and the five planets of Barnard’s star recently discovered, are all found very close to their respective minimum interaction distributions. Applied to the planetary system of the Sun, the principle requires that there was once a planet of mass ˜ 90 Mθ in the asteroid belt, which ‘disappeared’ relatively recently in the history of the solar system.


1998 ◽  
Vol 4 (S2) ◽  
pp. 602-603
Author(s):  
D. B. Williams ◽  
J. I. Goldstein

Meteorites are remnants of the primordial material from which the solar system condensed. Most meteorites originated in the asteroid belt between Mars and Jupiter and fell to earth when their orbits were disturbed by collisions. Metal phases are present in all types of meteorites and are alloys of Fe and Ni containing S and P. The study of metal meteorites has yielded valuable information about the early thermal history of the solar system, since their heat treatment has been preserved in the microstructure and microchemistry of the meteorites and can be discerned by electron microscopy and microanalysis. A full understanding of the structure and chemistry of meteorites requires detailed knowledge of the Fe-Ni, Fe-Ni-S and Fe-Ni-P phase diagrams and determination of these diagrams has been carried out over more than three decades of electron-beam analysis by the authors.


2021 ◽  
Author(s):  
Helmut Lammer ◽  
Manuel Scherf ◽  
Nikolai V. Erkaev

<p>Here we discuss terrestrial planet formation by using Earth and our knowledge from various isotope data such as <sup>182</sup>Hf-<sup>182</sup>W, U-Pb, lithophile-siderophile elements, atmospheric <sup>36</sup>Ar/<sup>38</sup>Ar, <sup>20</sup>Ne/<sup>22</sup>Ne, <sup>36</sup>Ar/<sup>22</sup>Ne isotope ratios, the expected solar <sup>3</sup>He abundance in Earth’s deep mantle and Earth’s D/H sea water ratios as an example. By analyzing the available isotopic data one finds that, the bulk of Earth’s mass most likely accreted within 10 to 30 million years after the formation of the solar system. Proto-Earth most likely accreted a mass of 0.5 to 0.6 <em>M</em><sub>Earth</sub> during the disk lifetime of 3 to 4.5 million years and the rest after the disk evaporated (see also Lammer et al. 2021; DOI: 10.1007/s11214-020-00778-4). We also show that particular accretion scenarios of involved planetary building blocks, large planetesimals and planetary embryos that lose also volatiles and moderate volatile rock-forming elements such as the radioactive decaying isotope <sup>40</sup>K determine if a terrestrial planet in a habitable zone of a Sun-like star later evolves to an Earth-like habitat or not. Our findings indicate that one can expect a large diversity of exoplanets with the size and mass of Earth inside habitable zones of their host stars but only a tiny number may have formed to the right conditions that they could potentially evolve to an Earth-like habitat. Finally, we also discuss how future ground- and space-based telescopes that can characterize atmospheres of terrestrial exoplanets can be used to validate this hypothesis.   </p>


Science ◽  
1982 ◽  
Vol 217 (4563) ◽  
pp. 891-898 ◽  
Author(s):  
Stephen G. Brush

The theories of Harold C. Urey (1893-1981) on the origin of the moon are discussed in relation to earlier ideas, especially George Howard Darwin's fission hypothesis. Urey's espousal of the idea that the moon had been captured by the earth and has preserved information about the earliest history of the solar system led him to advocate a manned lunar landing. Results from the Apollo missions, in particular the deficiency of siderophile elements in the lunar crust, led him to abandon the capture selenogony and tentatively adopt the fission hypothesis.


2018 ◽  
Vol 115 (34) ◽  
pp. 8547-8552 ◽  
Author(s):  
Brandon Mahan ◽  
Frédéric Moynier ◽  
Julien Siebert ◽  
Bleuenn Gueguen ◽  
Arnaud Agranier ◽  
...  

Chondrites and their main components, chondrules, are our guides into the evolution of the Solar System. Investigating the history of chondrules, including their volatile element history and the prevailing conditions of their formation, has implications not only for the understanding of chondrule formation and evolution but for that of larger bodies such as the terrestrial planets. Here we have determined the bulk chemical composition—rare earth, refractory, main group, and volatile element contents—of a suite of chondrules previously dated using the Pb−Pb system. The volatile element contents of chondrules increase with time from ∼1 My after Solar System formation, likely the result of mixing with a volatile-enriched component during chondrule recycling. Variations in the Mn/Na ratios signify changes in redox conditions over time, suggestive of decoupled oxygen and volatile element fugacities, and indicating a decrease in oxygen fugacity and a relative increase in the fugacities of in-fluxing volatiles with time. Within the context of terrestrial planet formation via pebble accretion, these observations corroborate the early formation of Mars under relatively oxidizing conditions and the protracted growth of Earth under more reducing conditions, and further suggest that water and volatile elements in the inner Solar System may not have arrived pairwise.


Author(s):  
Conel M. O'D. Alexander

Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2–4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt (‘classical’ model) or in the outer Solar System (5–15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3–7 AU in the Grand Tack model) and possibly close to where they are found today. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


2020 ◽  
Author(s):  
Xian Shi ◽  

<p>GAUSS (Genesis of Asteroids and EvolUtion of the Solar System) is a mission concept for the future exploration of Ceres. As both the largest resident of the main asteroid belt and the only dwarf planet in the inner Solar System, Ceres holds critical information for probing the evolution and habitability of our Solar System. NASA’s DAWN mission performed the by far most comprehensive investigation of Ceres during its over three year in-orbit operation around this unique world. Data collected by remote sensing instruments revealed an amazingly diverse landscape comprising different types of geological features. Beneath its volatile- and organic-rich surface, Ceres might have once possessed a global ocean, the remnants of which possibly still exist today as pockets of brine between the mantle and the crust. Hydrothermal activities that took place in recent geological time transferred materials deep inside Ceres to its surface, forming several outstanding surface features that are optimal for future sampling. Similar processes could occur on other ocean worlds in the Solar System, making Ceres a benchmark case for studying the evolution and habitability of these objects in general.</p> <p>To fully understand the physical and chemical evolution of Ceres, high resolution analyses of samples are necessary. With cryogenic sample return as its final step, the GAUSS project aims to answer the following key questions:</p> <ul> <li>What is the origin of Ceres and the origin and transfer of water and other volatiles in the inner solar system?</li> <li>What are the physical properties and internal structure of Ceres? What do they tell us about the evolutionary and aqueous alteration history of icy dwarf planets?</li> <li>What are the astrobiological implications of Ceres? Was it habitable in the past and is it still today?</li> <li>What are the mineralogical connections between Ceres and our current collections of primitive meteorites?</li> </ul>


2020 ◽  
Author(s):  
Beibei Liu ◽  
Sean Raymond ◽  
Seth Jacobson

Abstract The Solar System’s orbital structure is thought to have been sculpted by a dynamical instability among the giant planets[1–4]. Yet the instability trigger and exact timing have proved hard to pin down[5–9]. The giant planets formed within a gas-dominated disk around the young Sun. Motivated by giant exoplanet systems found in mean motion resonance[10], hydrodynamical modeling has shown that while the disk was present the giant planets migrated into a compact orbital configuration, in a chain of resonances[2,11]. Here we use a suite of dynamical simulations to show that the giant planets’ instability was likely triggered by the dispersal of the Sun’s gaseous disk. As the disk evaporated from the inside-out, its inner edge swept successively across and dynamically perturbed each planet’s orbit in turn. Saturn and each ice giants’ orbits were torqued strongly enough to migrate outward. As a given planet migrated outward with the disk’s inner edge the orbital configuration of the exterior system was compressed, triggering dynamical instability. The final orbits of our simulated systems match those of the Solar System for a viable range of astrophysical parameters. Our results demonstrate that the giant planet instability happened as the gaseous disk dissipated, constrained by astronomical observations to be a few to ten million years after the birth of the Solar System [12]. Late-stage terrestrial planet formation would occur mostly after such an early giant planet instability [13,14], thereby avoiding the possibility of de-stabilizing the terrestrial planets [15] and naturally accounting for the small mass of Mars relative to Earth and the mass depletion of the main asteroid belt [16].


Sign in / Sign up

Export Citation Format

Share Document