n isotopes
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 26)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 923 (2) ◽  
pp. 196
Author(s):  
Min Liu ◽  
Pan Jiang ◽  
Liya Lu ◽  
Tonghui Yin ◽  
Liying Ma ◽  
...  

Abstract The origin and evolution of the 14N/15N ratio of Titan’s atmosphere has long been a subject of debate. Clearly a better understanding of the N isotopic fractionation mechanism would greatly help resolve this. Photodissociation of N2 by solar radiation has been suggested to either play a negligible role in fractionating the N isotopes in Titan, due to its rather low escape velocity, or to preferentially remove 15N through self-shielding controlled photochemical reactions. Here, we systematically measure the branching ratios of 14N15N between N(4S)+N(2P) and N(4S)+N(2D) channels. We find that many of its absorption states predominantly dissociate into N(4S)+N(2P) with a strong isotope effect between 14N2 and 14N15N. Since N atoms produced from N(4S)+N(2P) acquire velocities close to Titan’s escape velocity, these findings provide a new N isotope fractionation mechanism for Titan that has not been considered before, potentially providing important constraints on the origin and evolution of Titan’s N2-dominated atmosphere.


2021 ◽  
Vol 14 (8) ◽  
pp. 5001-5022
Author(s):  
Huan Fang ◽  
Wendell W. Walters ◽  
David Mase ◽  
Greg Michalski

Abstract. Nitrogen oxides, classified as NOx (nitric oxide (NO) + nitrogen dioxide (NO2)) and NOy (NOx+ NO3, N2O5 HNO3, + HNO4+ HONO + Peroxyacetyl nitrate (PAN) + organic nitrates + any oxidized N compound), are important trace gases in the troposphere, which play an important role in the formation of ozone, particulate matter (PM), and secondary organic aerosols (SOA). There remain many uncertainties in the origin and fate of atmospheric N compounds including the understanding of NOy cycling, NOx emission budgets, unresolved issues within the heterogeneous uptake coefficients of N2O5, and the formation of organic nitrates in urban forests, to name a few. A potential tool to resolve some of these uncertainties are using natural abundance N isotopes in NOy compounds. Here we have developed a photochemical mechanism used to simulate tropospheric photochemistry to include 15N compounds and reactions as a means to simulate δ15N values in NOy compounds. The 16 N compounds and 96 reactions involving N used in the Regional Atmospheric Chemistry Mechanism (RACM) were replicated using 15N in a new mechanism called iNRACM. The 192 N reactions in iNRACM were tested to see if isotope effects were relevant with respect to significantly changing the δ15N values (±1 ‰) of NOx, HONO, and/or HNO3. The isotope fractionation factors (α) for relevant reactions were assigned based on recent experimental or calculated values. Each relevant reaction in the iNRACM mechanism was tested individually and in concert in order to assess the controlling reactions. The controlling reactions and their diurnal importance are discussed. A comparison between iNRACM predictions and observed δ15N NO3- in particulate matter from Tucson, Arizona, suggests the model, and isotope fractionation factors incorporated into it, are accurately capturing the isotope effects occurring during the photochemistry of NOy. The implication is that measurements of δ15N in NOy compounds may be a new way of tracing in situ N chemistry and a means of assessing NOx emission budgets.


Author(s):  
T. G. Naghiyev

The neutron capture processes in the AlN nanoparticles were investigated by computer modeling. Neutrons absorption were separately investigated for aluminum (Al) and nitrogen (N) atoms in the AlN nanoparticles. The modeling was performed separately for each stable Al and N isotopes, because the effective absorption cross-section of different types of isotopes of Al and N atoms is different. Moreover, effective cross-section spectra of neutron capture for aluminum and nitrogen atoms were comparatively investigated.


Ecologies ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 187-202
Author(s):  
Waylon Hiler ◽  
Stanley E. Trauth ◽  
Benjamin Wheeler ◽  
Aimee Jimenez ◽  
Milica Radanovic ◽  
...  

Ozark hellbenders (Cryptobranchus alleganiensis bishopi) have undergone marked population declines across their entire distribution. A variety of ecological life history research has been conducted to determine the cause(s) of the declines. Historically, hellbender diet studies used stomach content examination methods; however, alternative approaches such as less intrusive stable isotope analyses are now options for researchers. The goals of our study were to conduct stable isotope analysis on live and formalin-preserved museum specimen Ozark hellbender tissues to identify diet composition in the Eleven Point and Spring rivers, Arkansas. Also, we used stable isotope analysis to investigate if Spring River hellbender diets have changed over time. We sampled fish, live hellbenders (non-destructively), and formalin-preserved hellbender tissues from museum collections for stable isotope analysis. We sampled crayfish for assemblage composition and stable isotope analysis. The results of our stable isotope study revealed three main findings: (1) there were no statistically significant differences between hellbender δ13C and δ15N values among sites and hellbender stable C and N isotopes were correlated with body length; (2) traditional δ13C versus δ15N bi-plots and trophic discrimination values did not provide complete discernment in hellbender diets; however, Bayesian MixSIAR models revealed hellbenders to be generalists, and (3) the use of δ13C and δ15N values adjusted historic formalin-fixed and ethanol preserved hellbenders matched well with current crayfish and fish stable isotope values based on Bayesian MixSIAR models. These findings provide important diet information and a possible tool to examine dietary patterns from preserved specimens that may be used for hellbender conservation and management.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 134
Author(s):  
Anne-Catherine Pierson-Wickmann ◽  
Mélanie Davranche ◽  
Julien Kerloc'h ◽  
Charlotte Catrouillet ◽  
Elaheh Lotfi-Kalahroodi

It has long been considered that ferric phases stabilize organic matter (OM) in soils. Temporarily waterlogged soils, in which Fe is submitted to regular reductive solubilization and oxidizing precipitation, have often been used to study these processes. However, few studies have been interested in the evolution of the OM quality under such conditions. We therefore experimentally investigated the impact of a redox cycle on the quality of the dissolved organic matter (DOM) from wetland soil. The DOM quality was monitored using a combination of analyses run on the elements (%C, %N, C/N), isotopes (δ15N, δ13C), optical index (specific UV absorbance at 254 nm), and fluorescence indexes (FI, HIX, BIX). In addition, the cation and anion concentrations were also determined in the soil solutions throughout the experiment. As classically demonstrated, OM is solubilized as terrestrial aromatic molecules in the first stage of the reducing period, and then as nonaromatic molecules until the end of the reduction, in response to the dissimilatory reductive dissolution of Fe-oxyhydroxides in the soil. More interestingly, we demonstrate that the reintroduction of O2 involves significant lysis of reducing bacterial cells involving the production of small labile organic carbon which represents a significant pathway for OM degradation. Moreover, in response to the physical constraints, the newly formed Fe-OM precipitates produce small aggregates rich in aromatic OM that are expected to disseminate in the environment, representing a second significant way to remove OM.


2021 ◽  
Author(s):  
Bernhard Lucke ◽  
Jago Birk ◽  
Michael Zech ◽  
Nora Voss ◽  
Günther Schörner ◽  
...  

<p>Patterns and intensities of past land use are mostly unknown. However, soils in the vicinity of archaeological sites usually carry significant amounts of material culture (mostly pottery sherds) which testify to past human activity. We surveyed surface transects of material culture and soil distribution, radiating from the city center of ancient Abila of the Decapolis. The city had been abandoned during the Medieval and was never resettled, which minimizes the presence of material culture from younger periods. In addition, earlier studies suggested that soil erosion of the rather level limestone plateau surrounding the site was rather limited, indicating that actual land surfaces largely represent those of antiquity. Our survey encountered strongly varying quantities of material culture, which correspond to some soil properties such as concentrations of faeces biomarkers of pork excrements. As the material culture mainly dates to Late Antiquity, and as pork consumption during the Islamic periods is rather unlikely, this indicates that the distribution of the archaeological material was to some degree connected with pig breeding during Antiquity. A possible practice leading to sherd deposition on fields could be manuring, such as from applying dung including pork excrements, but ratios of N-isotopes do not suggest that fields surrounding Abila were subject to application of larger amounts of manure. Therefore, it seems very likely that material culture deposition on the land surrounding Abila was partly connected with the herding of pigs, a land use practice that is attested in Biblical sources on the region.</p>


2021 ◽  
Author(s):  
Yuntao Wu ◽  
Zhaoliang Song

<p>Carbon (C) and nitrogen (N) isotopes are important traits to characterize terrestrial ecosystems. Studying the relationships between carbon and nitrogen isotopes of soils and plants in different grassland types and under different environmental conditions is of great importance to the reconstruction of past climate. In this study, we selected three different grassland ecosystems (temperate meadow steppe, temperate typical steppe and temperate desert steppe) in northern China, collected meteorological data and plant and soil samples, determined the basic physical and chemical properties, C and N isotopes to explore the patterns and controlling factors of C and N isotopes in plants and soils of grasslands in northern China. The results showed that there were significant differences in soil δ<sup>13</sup>C and δ<sup>15</sup>N between different grassland types in the northern temperate zone. The soil δ<sup>13</sup>C and δ<sup>15</sup>N of different depths of the northern temperate grassland soil increased with the increase of soil depth. The surface soil δ<sup>13</sup>C of temperate meadow steppe and temperate desert steppe had a good correlation with plant sample δ<sup>13</sup>C. The surface soil δ<sup>15</sup>N temperate typical steppe and temperate desert steppe had a good correlation with plant sample δ<sup>15</sup>N. Mean annual temperature (MAT) and mean annual precipitation (MAP) had a complicated relationship with carbon and nitrogen isotopes of surface soil and plant sample in northern temperate grassland. The surface soil δ<sup>13</sup>C and δ<sup>15</sup>N and the plant sample δ<sup>15</sup>N can be used as indicators of the change of MAT.</p><p><em>Keywords:</em> carbon isotopes, nitrogen isotopes, grasslands, climate, soil depth</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Hee J. Kim ◽  
Gabriel L. Hamer ◽  
Sarah A. Hamer ◽  
Job E. Lopez ◽  
Pete D. Teel

The ecology and host feeding patterns of many soft ticks (Ixodida: Argasidae) remain poorly understood. To address soft tick–host feeding associations, we fed Ornithodoros turicata Dugès on multiple host species and evaluated quantitative PCR (qPCR) and stable isotope analyses to identify the vertebrate species used for the bloodmeal. The results showed that a qPCR with host-specific probes for the cytochrome b gene successfully identified bloodmeals from chicken (Gallus gallus L.), goat (Capra aegagrus hircus L), and swine (Sus scrofa domesticus) beyond 330 days post-feeding and through multiple molting. Also, qPCR-based bloodmeal analyses could detect multiple host species within individual ticks that fed upon more than one species. The stable isotope bloodmeal analyses were based on variation in the natural abundance of carbon (13C/12C) and nitrogen (15N/14N) isotopes in ticks fed on different hosts. When compared to reference isotope signatures, this method discerned unique δ13C and δ15N signatures in the ticks fed on each host taxa yet could not discern multiple host species from O. turicata that fed on more than one host species. Given the significance of soft tick-borne zoonoses and animal diseases, elucidating host feeding patterns from field-collected ticks using these methods may provide insight for an ecological basis to disease management.


2021 ◽  
Vol 269 ◽  
pp. 115997
Author(s):  
A.M. Azad ◽  
S. Frantzen ◽  
M.S. Bank ◽  
L. Madsen ◽  
A. Maage

2020 ◽  
Vol 241 ◽  
pp. 117802
Author(s):  
Junyu Zou ◽  
Zhuo Liu ◽  
Xiaoqian Shi ◽  
Zefeng Song ◽  
Yuesuo Yang

Sign in / Sign up

Export Citation Format

Share Document