metal phases
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
C. V. Cargua-López ◽  
D. C. Vásconez-Núñez ◽  
F. M. Tello-Oquendo

This paper presents the analysis of corrosion resistance of bronzes to aluminum in a controlled corrosive environment. Three alloys were studied CuAl4.5; CuAl7,1 and CuAl10,1 (ASTM B824), whose chemical composition was evaluated by spectrometry (OES). To determine its metal phases, chemical attacks were carried out with FeCl3, HCl in 95% Ethanol and FeCl3, HCl, CrO3 in distilled water. The microstructures obtained were characterized by metallography using two microscopes, an optical and a scanning electron (SEM) and the phases obtained were compared. Subsequently, electrochemical corrosion tests were performed on each alloy. The electrolyte used in the tests was artificial seawater (ASTM D1141) with a pH of 10 ± 0.3. Then, the corrosion products were characterized by EDS and SEM. Once the identification phase was over, the products were removed with a 50% HCl solution. Corrosive attack damage in each microstructural matrix was identified and corrosion rates for each alloy were evaluated. Finally, the corrosion rate data were correlated with the Al and Sn percentages of the alloy. The results show that the higher the increase in aluminum, the lower the corrosion rate, for a maximum limit of Al = 10.11%; Sn = 0.13%; CR = 5,170 mpy; In addition, it was shown that these alloys are effective for marine environments with high salinity. The correlation can be used to estimate the corrosion rate for different pH of the electrolytic medium of any type of ferrous or non-ferrous alloy whose variables are dependent on its chemical composition. Keywords: corrosion, alloy, metallography, microstructure, spectrometry, electrochemistry. Resumen Este artículo presenta el análisis la resistencia a la corrosión de bronces al aluminio en un ambiente corrosivo controlado. Se estudiaron tres aleaciones CuAl4,5; CuAl7,1 y CuAl10,1 (ASTM B824), cuya composición química fue evaluada por espectrometría (OES). Para determinar sus fases metálicas se realizaron ataques químicos con FeCl3, HCl en Etanol al 95% y FeCl3, HCl, CrO3 en agua destilada. Las microestructuras obtenidas se caracterizaron mediante metalografía empleando dos microscopios, un óptico y un electrónico de barrido (SEM) y se compararon las fases obtenidas. Posteriormente, se realizaron ensayos de corrosión electroquímica a cada aleación. El electrolito utilizado en los ensayos fue agua de mar artificial (ASTM D1141) con un pH 10±0.3. Sucesivamente, se caracterizaron los productos de la corrosión mediante microscopia SEM. Una vez terminada la fase de identificación, se removieron los productos con una solución al 50% HCl. Los daños del ataque corrosivo en cada matriz microestructural fueron identificados y las tasas de corrosión para cada aleación fueron evaluadas. Finalmente, se correlacionaron los datos de tasas de corrosión con los porcentajes de Al y Sn de la aleación. Los resultados muestran que a mayor aumento de aluminio existe una menor tasa de corrosión, para un límite máximo de Al=10,11%; Sn=0.13%; CR=5,170 mpy; además, se demostró que estas aleaciones son eficaces para ambientes marinos con alta salinidad. La correlación puede ser utilizada para estimar la tasa de corrosión para diferentes pH del medio electrolítico de cualquier tipo de aleación ferrosa o no ferrosa cuyas variables sean dependientes de su composición química. Palabras claves: corrosión, aleación, metalografía, microestructura, espectrometría, electroquímica.


2021 ◽  
Vol 1912 (1) ◽  
pp. 012032
Author(s):  
A I Sabiilagusti ◽  
K D Nugrahaningtyas ◽  
Y Hidayat

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110198
Author(s):  
Feng Yin ◽  
Deqiu Dai

The new Cuban chondrite, Viñales, fell on February first, 2019 at Pinar del Rio, northwest of Cuba (22°37′10″N, 83°44′34″W). A total of about 50–100 kg of the meteorite were collected and the masses of individual samples are in a range 2–1100 g. Two polished thin sections were studied by optical microscope, Raman spectroscopy and electron microprobe analysis in this study. The meteorite mainly consists of olivine (Fa24.6), low-Ca pyroxene (Fs20.5), and troilite and Fe-Ni metal, with minor amounts of feldspar (Ab82.4-84.7). Three poorly metamorphosed porphyritic olivine-pyroxene and barred olivine chondrules are observed. The homogeneous chemical compositions and petrographic textures indicate that Viñales is a L6 chondrite. The Viñales has fresh black fusion crust with layered structure, indicating it experienced a high temperature of ∼1650°C during atmospheric entry. Black shock melt veins with width of 100–600 μm are pervasive in the Viñales and olivine, bronzite, and metal phases are dominate minerals of the shock melt vein. The shock features of major silicate minerals suggest a shock stage S3, partly S4, and the shock pressure could be >10 GPa.


Author(s):  
Adamantia Lazou ◽  
Casper Van Der Eijk ◽  
Kai Tang ◽  
Efthymios Balomenos ◽  
Leiv Kolbeinsen ◽  
...  

AbstractMetallurgical grade alumina is produced worldwide through the well-known Bayer process, which unavoidably generates bauxite residue (BR, also known as red mud) in almost equal amounts to alumina. This study aims the valorization of BR through a smelting-reduction process to obtain calcium aluminate slags that can be a proper feed for alumina recovery via the Pedersen process. It investigates the thermodynamics and characteristics of the slags and pig iron produced from mixtures of BR, a bauxite beneficiation byproduct, and lime. In this context, the evolution of the different phases in the slags is studied with advanced analytical techniques and thermodynamic calculations. According to the results, a CaO/Al2O3 mass ratio within 1.3 to 1.4 in the slags can yield more Al2O3-containing leachable phases, such as CaO·Al2O3 and 12CaO·7Al2O3. The cooling dictates the amount and the characteristics of these phases, and the slower cooling rate yields improved slag characteristics. The distribution of the elements between the slag and metal phases shows that iron is separated, and the majority of the P, Cr, Ni, and V are distributed in the produced pig iron, while S, Ti, and Si are mostly concentrated in the slags.


2021 ◽  
Vol 59 (1) ◽  
pp. 33-40
Author(s):  
Sujin Chae ◽  
Kyoungkeun Yoo ◽  
Richard Diaz Alorro ◽  
Manis Kumar Jha

Cu-Pb and Cu-Sb alloys were prepared at various ratios, from 10:90 to 90:10, and leaching tests with sulfuric acid were conducted to investigate the effect of Pb and Sb on the leaching of Cu from speiss, which is obtained from the top submerged lance furnace process. The Cu leaching efficiency increased as the amount of Cu increased in both alloys, but the leaching efficiencies were lower in the Cu-Sb alloy than in the Cu-Pb alloy. For example, in alloys with 70% Pb and Sb ratio, the leaching efficiency of Cu from the Cu-Pb alloy increased to 95%. The leaching efficiency of the Cu-Sb alloy was 67% in 2 mol/L sulfuric acid solution with 1% pulp density and 1000 cc/min O2 at 90 °C, 400 rpm, and 6 hours. When the leaching residues were examined with SEM (scanning electron microscopy)-EDS (Energy-dispersive X-ray spectroscopy), it was found that in all Cu-Pb alloys, Cu and Pb exist as independent metal phases, while, in Cu-Sb alloys, Cu formed intermetallic compounds with Sb such as Cu2Sb, because the Cu-Sb alloy has a lower melting point than the Cu-Pb alloy. These results suggest that Sb may retard the leaching rate of Cu from the alloy. When the leaching residue of speiss obtained from a top submerged lance furnace, intermetallic alloys of Cu-Sb were also observed, having a net structure. The net structure contains Cu metal in the center of the speiss particle, while the intermetallic alloys of Cu-Sb were present in the outer layer of the particle, in good agreement with the results using the alloys in this study. This suggests the intermetallic alloys of Cu-Sb can prevent copper from leaching.


SOIL ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 597-627
Author(s):  
Rota Wagai ◽  
Masako Kajiura ◽  
Maki Asano

Abstract. Global significance of iron (Fe) and aluminum (Al) for the storage of organic matter (OM) in soils and surface sediments is increasingly recognized. Yet specific metal phases involved or the mechanism behind metal–OM correlations frequently shown across soils remain unclear. We identified the allocation of major metal phases and OM to density fractions using 23 soil samples from five climate zones and five soil orders (Andisols, Spodosols, Inceptisols, Mollisols, Ultisols) from Asia and North America, including several subsurface horizons and both natural and managed soils. Each soil was separated into four to seven density fractions using sodium polytungstate with mechanical shaking, followed by the sequential extraction of each fraction with pyrophosphate (PP), acid oxalate (OX), and finally dithionite–citrate (DC) to estimate pedogenic metal phases of different solubility and crystallinity. The concentrations of Fe and Al (per fraction) extracted by each of the three reagents were generally higher in meso-density fractions (1.8–2.4 g cm−3) than in the lower- or higher-density fractions, showing a unique unimodal pattern along the particle density gradient for each soil. Across the studied soils, the maximum metal concentrations were always at the meso-density range within which PP-extractable metals peaked at 0.3–0.4 g cm−3 lower-density range relative to OX- and DC-extractable metals. Meso-density fractions, consisting largely of aggregated clusters based on SEM observation, accounted for on average 56 %–70 % of total extractable metals and OM present in these soils. The OM in meso-density fractions showed a 2–23 unit lower C : N ratio than the lowest-density fraction of the respective soil and thus appeared microbially processed relative to the original plant material. The amounts of PP- and OX-extractable metals correlated positively with co-dissolved C across the soils and, to some extent, across the density fractions within each soil. These results led to a hypothesis which involves two distinct levels of organo-metal interaction: (1) the formation of OM-rich, mixed metal phases with fixed OM : metal stoichiometry followed by (2) the development of meso-density microaggregates via “gluing” action of these organo-metallic phases by entraining other organic and mineral particles such as phyllosilicate clays. Given that OM is mainly located in meso-density fractions, a soil's capacity to protect OM may be controlled by the balance of three processes: (i) microbial processing of plant-derived OM, (ii) dissolution of metals, and (iii) the synthesis of organo-metallic phases and their association with clays to form meso-density microaggregates. The current hypothesis may help to fill the gap between well-studied molecular-scale interaction (e.g., OM adsorption on mineral surface, coprecipitation) and larger-scale processes such as aggregation, C accrual, and pedogenesis.


2020 ◽  
Vol 94 (5-6) ◽  
pp. 447-463
Author(s):  
Neil Chapman ◽  
Simon Gray ◽  
Joy Sumner ◽  
John Nicholls

AbstractIn the absence of protective scales, nickel-base superalloys have an extremely limited hot corrosion incubation period before increased rates of attack are experienced. This paper reports on the nickel-base superalloys: CMSX-4, CM247LC DS and IN6203DS subjected to 550 °C hot corrosion exposures of durations ranging from 0 to 800 h, during which none of the superalloys developed a fully protective scale. The aim of the research was to identify the incubation period of each superalloy and this was achieved by means of surface roughness evaluations. A metrology exercise was performed on the cross section of test specimens which produced Cartesian data points which were subsequently converted to Ra and Rz data. Statistical analysis of the results suggested the incubation period lasted approximately 400, 500 and 200 h, respectively, for each superalloy. It was concluded that refractory metal phases within the microstructure were associated with the relatively short IN6203DS incubation period. This paper demonstrates that monitoring the changes in surface roughness provides a plausible method to identify the transition from incubation to propagation when studying 550 °C hot corrosion attack.


Author(s):  
V. A. Perepelitsyn ◽  
K. G. Zemlyanoy ◽  
K. V. Mironov ◽  
A. A. Forshev ◽  
F. P. Nikolaev ◽  
...  

The results of a comprehensive study of the material composition and microstructure of 20 skull samples taken after blowing out blast furnace № 6 of EVRAZ NTMK JSC are presented. More than 30 minerals and metal phases of different chemical classes were diagnosed in the samples of the skull. Unlike the skull of blast furnaces of other metallurgical plants (NLMK, ZSMK), the skull of NTMK blast furnaces has an abnormally high content of titanium, zinc, vanadium compounds, as well as heavy non-ferrous metals and sulfur. On the basis of a detailed petrographic analysis, 5 structural and genetic types (varieties in composition and origin) of the garnice were identified. The varieties of the garnish contain a large amount of grenal, which is dominated by refractory compounds of titanium and vanadium carbonitrides of the general formula (Ti, V) (C, N).


2020 ◽  
Author(s):  
Rota Wagai ◽  
Masako Kajiura ◽  
Maki Asano

Abstract. Global significance of iron (Fe) and aluminum (Al) for the storage of organic matter (OM) in soils and surface sediments is increasingly recognized. Yet specific metal phases involved or the mechanism behind metal-OM correlations frequently shown across soils remain unclear. We identified density fraction locations of major metal phases and OM using 23 soil samples from 5 climate zones and 5 soil orders (Andisols, Spodosols, Inceptisols, Mollisols, Ultisols), including several subsurface horizons and both natural and managed soils. Each soil was separated to 4 to 7 density fractions using sodium polytungstate with mechanical shaking, followed by the sequential extraction of each fraction with pyrophosphate (PP), acid oxalate (OX), and finally with dithionite-citrate (DC) to estimate pedogenic metal phases of different solubility and crystallinity. The extractable Fe and Al concentrations (per fraction) generally showed unique unimodal distribution along particle density gradient for each soil and each extractable metal phase. Across the studied soils, the maximum metal concentrations were always at meso-density range (1.8–2.4 g cm−3) within which PP-extractable metals peaked at 0.3–0.4 g cm−3 lower density range relative to OX- and DC-extractable metals. Meso-density fractions, consisted largely of microaggregates based on SEM observation, accounted for on average 56–70 % of total extractable metals and OM present in these soils. The OM in meso-density fractions appeared microbially processed from the original plant material. The amounts of PP- and OX-extractable metals correlated positively with co-dissolved C among the soils and, to some extent, across the density fractions within each soil. These results led to a hypothesis which involves two distinct levels of organo-metal interaction – the formation of OM-rich, mixed metal phases having relatively fixed OM : metal stoichiometry and subsequent development of meso-density microaggregates via gluing properties of these organo-metallic phases by incorporating other organic and mineral particles such as phyllosilicate clays. Given that stable OM is mainly located in meso-density fractions, soil's capacity to protect OM may be controlled by the balance of following three processes: (i) microbial processing of plant-derived OM, (ii) dissolution of metals, and (iii) the synthesis of organo-metallic phases and their association with clays to form meso-density microaggregates. The current hypothesis may help to fill the gap between well-studied molecular scales interaction (e.g., OM adsorption on mineral surface, coprecipitation) and larger-scale processes such as aggregation, C accrual, and pedogenesis.


Sign in / Sign up

Export Citation Format

Share Document