scholarly journals Improved inference for areal unit count data using graph-based optimisation

2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Duncan Lee ◽  
Kitty Meeks ◽  
William Pettersson

AbstractSpatio-temporal count data relating to a set of non-overlapping areal units are prevalent in many fields, including epidemiology and social science. The spatial autocorrelation inherent in these data is typically modelled by a set of random effects that are assigned a conditional autoregressive prior distribution, which is a special case of a Gaussian Markov random field. The autocorrelation structure implied by this model depends on a binary neighbourhood matrix, where two random effects are assumed to be partially autocorrelated if their areal units share a common border, and are conditionally independent otherwise. This paper proposes a novel graph-based optimisation algorithm for estimating either a static or a temporally varying neighbourhood matrix for the data that better represents its spatial correlation structure, by viewing the areal units as the vertices of a graph and the neighbour relations as the set of edges. The improved estimation performance of our methodology compared to the commonly used border sharing rule is evidenced by simulation, before the method is applied to a new respiratory disease surveillance study in Scotland between 2011 and 2017.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ahmed Nabil Shaaban ◽  
Bárbara Peleteiro ◽  
Maria Rosario O. Martins

Abstract Background This study offers a comprehensive approach to precisely analyze the complexly distributed length of stay among HIV admissions in Portugal. Objective To provide an illustration of statistical techniques for analysing count data using longitudinal predictors of length of stay among HIV hospitalizations in Portugal. Method Registered discharges in the Portuguese National Health Service (NHS) facilities Between January 2009 and December 2017, a total of 26,505 classified under Major Diagnostic Category (MDC) created for patients with HIV infection, with HIV/AIDS as a main or secondary cause of admission, were used to predict length of stay among HIV hospitalizations in Portugal. Several strategies were applied to select the best count fit model that includes the Poisson regression model, zero-inflated Poisson, the negative binomial regression model, and zero-inflated negative binomial regression model. A random hospital effects term has been incorporated into the negative binomial model to examine the dependence between observations within the same hospital. A multivariable analysis has been performed to assess the effect of covariates on length of stay. Results The median length of stay in our study was 11 days (interquartile range: 6–22). Statistical comparisons among the count models revealed that the random-effects negative binomial models provided the best fit with observed data. Admissions among males or admissions associated with TB infection, pneumocystis, cytomegalovirus, candidiasis, toxoplasmosis, or mycobacterium disease exhibit a highly significant increase in length of stay. Perfect trends were observed in which a higher number of diagnoses or procedures lead to significantly higher length of stay. The random-effects term included in our model and refers to unexplained factors specific to each hospital revealed obvious differences in quality among the hospitals included in our study. Conclusions This study provides a comprehensive approach to address unique problems associated with the prediction of length of stay among HIV patients in Portugal.


NeuroImage ◽  
1998 ◽  
Vol 8 (4) ◽  
pp. 340-349 ◽  
Author(s):  
Xavier Descombes ◽  
Frithjof Kruggel ◽  
D.Yves von Cramon

2018 ◽  
Vol 147 ◽  
Author(s):  
A. Aswi ◽  
S. M. Cramb ◽  
P. Moraga ◽  
K. Mengersen

AbstractDengue fever (DF) is one of the world's most disabling mosquito-borne diseases, with a variety of approaches available to model its spatial and temporal dynamics. This paper aims to identify and compare the different spatial and spatio-temporal Bayesian modelling methods that have been applied to DF and examine influential covariates that have been reportedly associated with the risk of DF. A systematic search was performed in December 2017, using Web of Science, Scopus, ScienceDirect, PubMed, ProQuest and Medline (via Ebscohost) electronic databases. The search was restricted to refereed journal articles published in English from January 2000 to November 2017. Thirty-one articles met the inclusion criteria. Using a modified quality assessment tool, the median quality score across studies was 14/16. The most popular Bayesian statistical approach to dengue modelling was a generalised linear mixed model with spatial random effects described by a conditional autoregressive prior. A limited number of studies included spatio-temporal random effects. Temperature and precipitation were shown to often influence the risk of dengue. Developing spatio-temporal random-effect models, considering other priors, using a dataset that covers an extended time period, and investigating other covariates would help to better understand and control DF transmission.


Author(s):  
Yaqiong Wang ◽  
Ke Xu ◽  
Shaomin Li

In recent years, with rapid industrialization and massive energy consumption, ground-level ozone ( O 3 ) has become one of the most severe air pollutants. In this paper, we propose a functional spatio-temporal statistical model to analyze air quality data. Firstly, since the pollutant data from the monitoring network usually have a strong spatial and temporal correlation, the spatio-temporal statistical model is a reasonable method to reveal spatial correlation structure and temporal dynamic mechanism in data. Secondly, effects from the covariates are introduced to explore the formation mechanism of ozone pollution. Thirdly, considering the obvious diurnal pattern of ozone data, we explore the diurnal cycle of O 3 pollution using the functional data analysis approach. The spatio-temporal model shows great applicational potential by comparison with other models. With application to O 3 pollution data of 36 stations in Beijing, China, we give explanations of the covariate effects on ozone pollution, such as other pollutants and meteorological variables, and meanwhile we discuss the diurnal cycle of ozone pollution.


Sign in / Sign up

Export Citation Format

Share Document