scholarly journals Solvent influence on intramolecular interactions and aromaticity in meta and para nitroanilines

2020 ◽  
Vol 31 (5) ◽  
pp. 1717-1728
Author(s):  
Krzysztof K. Zborowski ◽  
Halina Szatyłowicz ◽  
Tadeusz M. Krygowski

Abstract Theoretical density functional theory (B3LYP/6-31G**) was used to study the intra- and intermolecular interactions of nitrobenzene, aniline, and meta and para nitroaniline in various solvation models. The studied molecules were solvated by one or two water molecules in the presence of continuum solvation (the PCM model) or without it. Finally, the studied molecules were surrounded by a cluster of water molecules. For comparison, calculations were also made for separated molecules. Geometries, energies, hydrogen bonding between solutes and solvent molecules, atomic charges, and aromaticity were examined. The analysis was based on the Atoms in Molecules methodology and the Harmonic Oscillator Model of Aromaticity (HOMA) index. As a result, an extensive description of the solvation of nitro and amino groups and the effect of solvation on mutual interactions between these groups in meta and para nitroanilines is provided. It was found that in general, the PCM description of the hydration effect on the electronic structure of the studied systems (substituents) is consistent with the approach taking into account all individual interactions (cluster model).

2018 ◽  
Author(s):  
Kyle Reeves ◽  
Damien Dambournet ◽  
Christel Laberty-Robert ◽  
Rodolphe Vuilleumier ◽  
Mathieu Salanne

Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO<sub>2</sub> with charge balance achieved via the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a<br>monolayer of water via density functional theory based molecular dynamics. We compute the projected density of states for only those atoms at the interface and for those states that fall within 1eV of the Fermi energy for various steps throughout the simulation, and we determine that the<br>variation in this representation of the density of states serves as a reasonable tool to anticipate where surfaces are most likely to be reactive. In particular, we conclude that water dissociation at the surface is the main mechanism that influences the anatase (001) surface whereas the change in<br>the density of states at the surface of the fluorinated structure is influenced primarily through the adsorption of water molecules at the surface.


2018 ◽  
Author(s):  
Kyle Reeves ◽  
Damien Dambournet ◽  
Christel Laberty-Robert ◽  
Rodolphe Vuilleumier ◽  
Mathieu Salanne

Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO<sub>2</sub> with charge balance achieved via the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a<br>monolayer of water via density functional theory based molecular dynamics. We compute the projected density of states for only those atoms at the interface and for those states that fall within 1eV of the Fermi energy for various steps throughout the simulation, and we determine that the<br>variation in this representation of the density of states serves as a reasonable tool to anticipate where surfaces are most likely to be reactive. In particular, we conclude that water dissociation at the surface is the main mechanism that influences the anatase (001) surface whereas the change in<br>the density of states at the surface of the fluorinated structure is influenced primarily through the adsorption of water molecules at the surface.


2020 ◽  
Author(s):  
Hugo Souza ◽  
Antonio Chaves Neto ◽  
Francisco Sousa ◽  
Rodrigo Amorim ◽  
Alexandre Reily Rocha ◽  
...  

In this work, we investigate the effects of building block separation of Phenylalanine-Tryptophan nanotube induced by the confined water molecules on the electronic properties using density-functional theory based tight-binding method. <div><br></div>


INEOS OPEN ◽  
2021 ◽  
Vol 4 ◽  
Author(s):  
Yu. A. Borisov ◽  
◽  
S. S. Kiselev ◽  

The interaction of cucurbiturils (Q6, Q7, and Q8) with Ca and Ba chlorides and iodides are studied for the first time by density functional theory. The thermodynamic parameters for the formation of host–guest complexes are calculated. The structures of complexes of Q6 and Q7 with one and two guest molecules are established. The energy parameters for the transfer of Be2+ and Ba2+ cations from an aqueous solution into the cavity of Q7 containing n water molecules are defined. The dependences of the formation energies for complexes Q7WnBe2+ and Q7WnBa2+ on the number of water molecules are shown to be parabolic, with the energy minima at n = 5 and n = 6, respectively. It is found that Q7 can form in an aqueous solution supramolecular complexes with protonated histamine (HA) and neutral histamine in the presence of Ca2+ ions.


2019 ◽  
Author(s):  
Zoi Salta ◽  
Agnie M. Kosmas ◽  
Oscar Ventura ◽  
Vincenzo Barone

<p>The dehalogenation of 2-chloroethanol (2ClEtOH) in gas phase with and without participation of catalytic water molecules has been investigated using methods rooted into the density functional theory. The well-known HCl elimination leading to vinyl alcohol (VA) was compared to the alternative elimination route towards oxirane and shown to be kinetically and thermodynamically more favorable. However, the isomerization of VA to acetaldehyde in the gas phase, in the absence of water, was shown to be kinetically and thermodynamically less favorable than the recombination of VA and HCl to form the isomeric 1-chloroethanol (1ClEtOH) species. This species is more stable than 2ClEtOH by about 6 kcal mol<sup>-1</sup>, and the reaction barrier is 22 kcal mol<sup>-1</sup> vs 55 kcal mol<sup>-1</sup> for the direct transformation of VA to acetaldehyde. In a successive step, 1ClEtOH can decompose directly to acetaldehyde and HCl with a lower barrier (29 kcal mol<sup>-1</sup>) than that of VA to the same products (55 kcal mol<sup>-1</sup>). The calculations were repeated using a single ancillary water molecule (W) in the complexes 2ClEtOH_W and 1ClEtOH_W. The latter adduct is now more stable than 2ClEtOH_W by about 8 kcal mol<sup>-1</sup>, implying that the water molecule increased the already higher stability of 1ClEtOH in the gas phase. However, this catalytic water molecule lowers dramatically the barrier for the interconversion of VA to acetaldehyde (from 55 to 6 kcal mol<sup>-1</sup>). This barrier is now smaller than the one for the conversion to 1ClEtOH (which also decreases, but not so much, from 22 to 12 kcal mol<sup>-1</sup>). Thus, it is concluded that while 1ClEtOH may be a plausible intermediate in the gas phase dehalogenation of 2ClEtOH, it is unlikely that it plays a major role in water complexes (or, by inference, aqueous solution). It is also shown that neither in the gas phase nor in the cluster with one water molecule, the oxirane path is competitive with the VA alcohol path.</p>


2021 ◽  
Vol 129 (5) ◽  
pp. 599
Author(s):  
С.Н. Цеплина ◽  
E.E. Цеплин

Optical absorption spectra of 1,2-naphthoquinone in non-polar (n-hexane) and polar (water) solvents were obtained. It is shown that the use of quantum chemical calculations based on time-dependent density functional theory (TDDFT B3LYP/6-311+G(d, p)) with the polarizable continuum model (PCM) for calculating 1,2-naphthoquinone in a solution of n-hexane and hydrogen complex of 1,2-naphthoquinone with two water molecules in an aqueous medium describes well the shifts of the absorption bands of 1,2-naphthoquinone in a water solution compared to a solution in n-hexane. Based on the analysis of deviations of the calculated band shifts from the experimental ones, the question of the formation of 1,2-naphthoquinone hydrogen complexes with n water molecules (n = 1-4) in an aqueous solution is considered.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 450 ◽  
Author(s):  
Zhang ◽  
Xu ◽  
Hu ◽  
He ◽  
Tian ◽  
...  

A scientific and rigorous study on the adsorption behavior and molecular mechanism of collector sodium oleate (NaOL) on a Ca2+-activated hydroxylated α-quartz surface was performed through experiments and density functional theory (DFT) simulations. The rarely reported hydroxylation behaviors of water molecules on the α-quartz (101) surface were first innovatively and systematically studied by DFT calculations. Both experimental and computational results consistently demonstrated that the adsorbed calcium species onto the hydroxylated structure can significantly enhance the adsorption of oleate ions, resulting in a higher quartz recovery. The calculated adsorption energies confirmed that the adsorbed hydrated Ca2+ in the form of Ca(H2O)3(OH)+ can greatly promote the adsorption of OL− on hydroxylated quartz (101). In addition, Mulliken population analysis together with electron density difference analysis intuitively illustrated the process of electron transfer and the Ca-bridge phenomenon between the hydroxylated surface and OL− ions. This work may offer new insights into the interaction mechanisms existing among oxidized minerals, aqueous medium, and flotation reagents.


Crystals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 222
Author(s):  
Lider ◽  
Sukhikh ◽  
Smolentsev ◽  
Semitut ◽  
Filatov ◽  
...  

Two binuclear coordination compounds of Cu(II) chloride with the bitopic ligand 1,1,2,2-tetrakis(pyrazol-1-yl)ethane (Pz4) of the composition [Cu2(µ2Pz4)(DMSO)2Cl4]·4H2O and [Cu2(µ2Pz4)(DMSO)2Cl4]∙2DMSO were prepared and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single-crystal X-ray diffraction, and powder diffraction analysis. It was shown that in contrast to silver(I) and copper(II) nitrates, copper(II) chloride forms discrete complexes instead of coordination polymers. The supramolecular structure of the complex [Cu2(µ2Pz4)(DMSO)2Cl4]·4H2O with lattice water molecules is formed by OH···Cl and OH···O hydrogen bonds. Density functional theory (DFT) calculations of vibrational frequencies of the ligand and its copper(II) complex allowed for assigning IR bands to specific vibrations.


2017 ◽  
Vol 17 (11) ◽  
pp. 5845-5857 ◽  
Author(s):  
Marcos A. P. Martins ◽  
Leticia V. Rodrigues ◽  
Alexandre R. Meyer ◽  
Clarissa P. Frizzo ◽  
Manfredo Hörner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document