successive step
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 9)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 7 (Extra-E) ◽  
pp. 549-555
Author(s):  
Valentin P. Babintsev ◽  
Galina N. Gaidukova ◽  
Zhanna A. Shapoval

The paper addresses the problem on the consolidation of local communities, by which authors refer to the purposefully organized and regulated process of strengthening interpersonal and intergroup ties in a community. By consolidation route, the authors understand the process of mass consciousness modification of the territorial community, consisting in the successive (step-by-step) approval of the prerequisites for the assimilation of the consolidation idea as a behavioural norm. At each stage, however, bifurcation points and risks of not achieving the planned results are likely to emerge. Regulation in this case involves the application of point effects in bifurcation situations, the creation of conditions for movement in the desired direction, and the motivation of various groups of the territorial community to pass the route.


2021 ◽  
Vol 16 (2) ◽  
pp. 66-89
Author(s):  
Czesław Machelski ◽  
Maciej Hildebrand

Structural safety of a bridge depends, among other things, on the number of vehicles passing on its deck, their weights and distribution of loads to their axes. A large number of vehicles can accumulate on the bridge in a controlled state, i.e., during an acceptance test including load testing, and during traffic congestion on the bridge, which is a fortuitous event addressed in this paper. The paper deals with the analysis of load intensity on one bridge carriageway when it is fully and randomly filled during traffic congestion. The influence functions of the forces in the cables are used to determine the effects of loads exerted by the vehicles moving at very low speed. Effects of such loads are studied considering an exemplary cable-stayed bridge. Since the measurement basis was limited, the iterative algorithm was used. It consists in shortening the girder sections under analysis to the area appropriate for determining the load in each successive step of iteration. Ineffectiveness of the traditional algorithm, where the determined system of equations is resolved, is an important premise for using such algorithm. The results of numerical analysis show that the load intensity caused by traffic congestion is relatively high. It has been demonstrated that the matrix method may be successfully used to determine the real load of bridges on the basis of selected parameters measured in the bridge structure, also for complex scheme bridges, including the cable-stayed bridges.


2021 ◽  
Vol 16 (2) ◽  
pp. 66-89
Author(s):  
Czesław Machelski ◽  
Maciej Hildebrand

Structural safety of a bridge depends, among other things, on the number of vehicles passing on its deck, their weights and distribution of loads to their axes. A large number of vehicles can accumulate on the bridge in a controlled state, i.e., during an acceptance test including load testing, and during traffic congestion on the bridge, which is a fortuitous event addressed in this paper. The paper deals with the analysis of load intensity on one bridge carriageway when it is fully and randomly filled during traffic congestion. The influence functions of the forces in the cables are used to determine the effects of loads exerted by the vehicles moving at very low speed. Effects of such loads are studied considering an exemplary cable-stayed bridge. Since the measurement basis was limited, the iterative algorithm was used. It consists in shortening the girder sections under analysis to the area appropriate for determining the load in each successive step of iteration. Ineffectiveness of the traditional algorithm, where the determined system of equations is resolved, is an important premise for using such algorithm. The results of numerical analysis show that the load intensity caused by traffic congestion is relatively high. It has been demonstrated that the matrix method may be successfully used to determine the real load of bridges on the basis of selected parameters measured in the bridge structure, also for complex scheme bridges, including the cable-stayed bridges.


Author(s):  
Lamis Elmy Abdelaaty

What explains state responses to the refugees they receive? This book identifies two puzzling patterns: states open their borders to some refugee groups while blocking others (discrimination), and a number of countries have given the United Nations (UN) control of asylum procedures and refugee camps on their territory (delegation). To explain this selective exercise of sovereignty, the book develops a two-part theoretical framework in which policymakers in refugee-receiving countries weigh international and domestic concerns. Internationally, leaders use refugees to reassure allies and exert pressure on rivals. Domestically, policymakers have incentives to favor those refugee groups with whom they share an ethnic identity. When these international and domestic incentives conflict, shifting responsibility to the UN allows policymakers to placate both refugee-sending countries and domestic constituencies. The book then carries out a “three-stage, multi-level” research design in which each successive step corroborates and elaborates the findings of the preceding stage. The first stage involves statistical analysis of asylum admissions worldwide. The second stage presents two country case studies: Egypt (a country that is broadly representative of most refugee recipients) and Turkey (an outlier that has limited the geographic application of the Refugee Convention). The third stage zooms in on sub- or within-country dynamics in Kenya (home to one of the largest refugee populations in the world) through content analysis of parliamentary proceedings. Studying state responses to refugees is instructive because it can help explain why states sometimes assert, and at other times cede, their sovereignty in the face of refugee rights.


Author(s):  
Tallha Akram ◽  
Muhammad Attique ◽  
Salma Gul ◽  
Aamir Shahzad ◽  
Muhammad Altaf ◽  
...  

AbstractSince the emergence of COVID-19, thousands of people undergo chest X-ray and computed tomography scan for its screening on everyday basis. This has increased the workload on radiologists, and a number of cases are in backlog. This is not only the case for COVID-19, but for the other abnormalities needing radiological diagnosis as well. In this work, we present an automated technique for rapid diagnosis of COVID-19 on computed tomography images. The proposed technique consists of four primary steps: (1) data collection and normalization, (2) extraction of the relevant features, (3) selection of the most optimal features and (4) feature classification. In the data collection step, we collect data for several patients from a public domain website, and perform preprocessing, which includes image resizing. In the successive step, we apply discrete wavelet transform and extended segmentation-based fractal texture analysis methods for extracting the relevant features. This is followed by application of an entropy controlled genetic algorithm for selection of the best features from each feature type, which are combined using a serial approach. In the final phase, the best features are subjected to various classifiers for the diagnosis. The proposed framework, when augmented with the Naive Bayes classifier, yields the best accuracy of 92.6%. The simulation results are supported by a detailed statistical analysis as a proof of concept.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 846 ◽  
Author(s):  
Changzhou Chen ◽  
Peng Liu ◽  
Minghao Zhou ◽  
Brajendra K. Sharma ◽  
Jianchun Jiang

Transfer hydrogenation is a novel and efficient method to realize the hydrogenation in different chemical reactions and exploring a simple heterogeneous catalyst with high activity is crucial. Ni/CNT was synthesized through a traditional impregnation method, and the detailed physicochemical properties were performed by means of XRD, TEM, XPS, BET, and ICP analysis. Through the screening of loading amounts, solvents, reaction temperature, and reaction time, 20% Ni/CNT achieves an almost complete conversion of phenol after 60 min at 220 °C in the absence of external hydrogen. Furthermore, the catalytic system is carried out on a variety of phenol derivatives for the generation of corresponding cyclohexanols with good to excellent results. The mechanism suggests that the hydrogenation of phenol to cyclohexanone is the first step, while the hydrogenation of cyclohexanone for the generation of cyclohexanol takes place in a successive step. Moreover, Ni/CNT catalyst can be magnetically recovered and reused in the next test for succeeding four times.


2019 ◽  
Vol 45 (5) ◽  
pp. 6030-6036 ◽  
Author(s):  
Mohammad Reza Ghazanfari ◽  
S. Fatemeh Shams ◽  
Mahmoud Reza Jaafari ◽  
Mehrdad Kashefi

2019 ◽  
Author(s):  
Zoi Salta ◽  
Agnie M. Kosmas ◽  
Oscar Ventura ◽  
Vincenzo Barone

<p>The dehalogenation of 2-chloroethanol (2ClEtOH) in gas phase with and without participation of catalytic water molecules has been investigated using methods rooted into the density functional theory. The well-known HCl elimination leading to vinyl alcohol (VA) was compared to the alternative elimination route towards oxirane and shown to be kinetically and thermodynamically more favorable. However, the isomerization of VA to acetaldehyde in the gas phase, in the absence of water, was shown to be kinetically and thermodynamically less favorable than the recombination of VA and HCl to form the isomeric 1-chloroethanol (1ClEtOH) species. This species is more stable than 2ClEtOH by about 6 kcal mol<sup>-1</sup>, and the reaction barrier is 22 kcal mol<sup>-1</sup> vs 55 kcal mol<sup>-1</sup> for the direct transformation of VA to acetaldehyde. In a successive step, 1ClEtOH can decompose directly to acetaldehyde and HCl with a lower barrier (29 kcal mol<sup>-1</sup>) than that of VA to the same products (55 kcal mol<sup>-1</sup>). The calculations were repeated using a single ancillary water molecule (W) in the complexes 2ClEtOH_W and 1ClEtOH_W. The latter adduct is now more stable than 2ClEtOH_W by about 8 kcal mol<sup>-1</sup>, implying that the water molecule increased the already higher stability of 1ClEtOH in the gas phase. However, this catalytic water molecule lowers dramatically the barrier for the interconversion of VA to acetaldehyde (from 55 to 6 kcal mol<sup>-1</sup>). This barrier is now smaller than the one for the conversion to 1ClEtOH (which also decreases, but not so much, from 22 to 12 kcal mol<sup>-1</sup>). Thus, it is concluded that while 1ClEtOH may be a plausible intermediate in the gas phase dehalogenation of 2ClEtOH, it is unlikely that it plays a major role in water complexes (or, by inference, aqueous solution). It is also shown that neither in the gas phase nor in the cluster with one water molecule, the oxirane path is competitive with the VA alcohol path.</p>


2019 ◽  
Author(s):  
Zoi Salta ◽  
Agnie M. Kosmas ◽  
Oscar Ventura ◽  
Vincenzo Barone

<p>The dehalogenation of 2-chloroethanol (2ClEtOH) in gas phase with and without participation of catalytic water molecules has been investigated using methods rooted into the density functional theory. The well-known HCl elimination leading to vinyl alcohol (VA) was compared to the alternative elimination route towards oxirane and shown to be kinetically and thermodynamically more favorable. However, the isomerization of VA to acetaldehyde in the gas phase, in the absence of water, was shown to be kinetically and thermodynamically less favorable than the recombination of VA and HCl to form the isomeric 1-chloroethanol (1ClEtOH) species. This species is more stable than 2ClEtOH by about 6 kcal mol<sup>-1</sup>, and the reaction barrier is 22 kcal mol<sup>-1</sup> vs 55 kcal mol<sup>-1</sup> for the direct transformation of VA to acetaldehyde. In a successive step, 1ClEtOH can decompose directly to acetaldehyde and HCl with a lower barrier (29 kcal mol<sup>-1</sup>) than that of VA to the same products (55 kcal mol<sup>-1</sup>). The calculations were repeated using a single ancillary water molecule (W) in the complexes 2ClEtOH_W and 1ClEtOH_W. The latter adduct is now more stable than 2ClEtOH_W by about 8 kcal mol<sup>-1</sup>, implying that the water molecule increased the already higher stability of 1ClEtOH in the gas phase. However, this catalytic water molecule lowers dramatically the barrier for the interconversion of VA to acetaldehyde (from 55 to 6 kcal mol<sup>-1</sup>). This barrier is now smaller than the one for the conversion to 1ClEtOH (which also decreases, but not so much, from 22 to 12 kcal mol<sup>-1</sup>). Thus, it is concluded that while 1ClEtOH may be a plausible intermediate in the gas phase dehalogenation of 2ClEtOH, it is unlikely that it plays a major role in water complexes (or, by inference, aqueous solution). It is also shown that neither in the gas phase nor in the cluster with one water molecule, the oxirane path is competitive with the VA alcohol path.</p>


2018 ◽  
Vol 4 (8) ◽  
pp. 1930 ◽  
Author(s):  
Abbas Torbizadeh ◽  
Ahmad Tahershamsi ◽  
Mohammad Reza Majdzadeh Tabatabai

Nowadays, step-pool formations have attracted a lot of attention, which are distinguished by the successive arrangements of the bed, suitable geometry, and the tumbling flow pattern, which can highly disperse water energy. Field study of a step–pool channel, along with one of the upper reaches of Kamandan River indicated a strong correlation between several morphological parameters of the river such as reach slope, step length, step height, pool depth, local slope, and the like. The length of the reach under the study is 145 meters and has an intermediate morphology based on Montgomery and Buffington’s classification. Therefore, twelve distinct step units were identified for 145 meters upstream while the rest was formed by steep morphology. In the present study, different definitions of wave length were applied to establish the relationships among the above parameters. For instance, the difference between apexes of every two successive step elevation was found to have a considerable relationship with the wavelength with a determination coefficient of 0.9. In addition, bankfull width and depth, along the profile for different cross-sections, were determined to establish a relationship between these parameters and pool spacing. Further, the parameters were applied to create a relationship with step heights.


Sign in / Sign up

Export Citation Format

Share Document