scholarly journals Correction to: Semantic annotation of summarized sensor data stream for effective query processing

2018 ◽  
Vol 76 (6) ◽  
pp. 4040-4040
Author(s):  
Shobharani Pacha ◽  
Suresh Ramalingam Murugan ◽  
R. Sethukarasi
2017 ◽  
Vol 76 (6) ◽  
pp. 4017-4039 ◽  
Author(s):  
Shobharani Pacha ◽  
Suresh Ramalingam Murugan ◽  
R. Sethukarasi

2013 ◽  
Vol 284-287 ◽  
pp. 3507-3511 ◽  
Author(s):  
Edgar Chia Han Lin

Due to the great progress of computer technology and mature development of network, more and more data are generated and distributed through the network, which is called data streams. During the last couple of years, a number of researchers have paid their attention to data stream management, which is different from the conventional database management. At present, the new type of data management system, called data stream management system (DSMS), has become one of the most popular research areas in data engineering field. Lots of research projects have made great progress in this area. Since the current DSMS does not support queries on sequence data, this project will study the issues related to two types of data. First, we will focus on the content filtering on single-attribute streams, such as sensor data. Second, we will focus on multi-attribute streams, such as video films. We will discuss the related issues such as how to build an efficient index for all queries of different streams and the corresponding query processing mechanisms.


Author(s):  
Alejandro Llaves ◽  
Oscar Corcho ◽  
Peter Taylor ◽  
Kerry Taylor

This paper presents a generic approach to integrate environmental sensor data efficiently, allowing the detection of relevant situations and events in near real-time through continuous querying. Data variety is addressed with the use of the Semantic Sensor Network ontology for observation data modelling, and semantic annotations for environmental phenomena. Data velocity is handled by distributing sensor data messaging and serving observations as RDF graphs on query demand. The stream processing engine presented in the paper, morph-streams++, provides adapters for different data formats and distributed processing of streams in a cluster. An evaluation of different configurations for parallelization and semantic annotation parameters proves that the described approach reduces the average latency of message processing in some cases.


2020 ◽  
Vol 10 (17) ◽  
pp. 5882
Author(s):  
Federico Desimoni ◽  
Sergio Ilarri ◽  
Laura Po ◽  
Federica Rollo ◽  
Raquel Trillo-Lado

Modern cities face pressing problems with transportation systems including, but not limited to, traffic congestion, safety, health, and pollution. To tackle them, public administrations have implemented roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. In the case of traffic sensor data not only the real-time data are essential, but also historical values need to be preserved and published. When real-time and historical data of smart cities become available, everyone can join an evidence-based debate on the city’s future evolution. The TRAFAIR (Understanding Traffic Flows to Improve Air Quality) project seeks to understand how traffic affects urban air quality. The project develops a platform to provide real-time and predicted values on air quality in several cities in Europe, encompassing tasks such as the deployment of low-cost air quality sensors, data collection and integration, modeling and prediction, the publication of open data, and the development of applications for end-users and public administrations. This paper explicitly focuses on the modeling and semantic annotation of traffic data. We present the tools and techniques used in the project and validate our strategies for data modeling and its semantic enrichment over two cities: Modena (Italy) and Zaragoza (Spain). An experimental evaluation shows that our approach to publish Linked Data is effective.


Sign in / Sign up

Export Citation Format

Share Document