Exact two-soliton solutions and two-periodic solutions of the perturbed mKdV equation with variable coefficients

2015 ◽  
Vol 184 (2) ◽  
pp. 1106-1113
Author(s):  
Ying Huang ◽  
Lin Liang
2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Alvaro H. Salas S ◽  
Cesar A. Gómez S

The general projective Riccati equation method and the Exp-function method are used to construct generalized soliton solutions and periodic solutions to special KdV equation with variable coefficients and forcing term.


2003 ◽  
Vol 14 (05) ◽  
pp. 661-672 ◽  
Author(s):  
ZHENYA YAN

Firstly twenty-four types of doubly-periodic solutions of the reduction mKdV equation are given. Secondly based on the reduction mKdV equation and its solutions, a systemic transformation method (called the reduction mKdV method) is developed to construct new doubly-periodic solutions of nonlinear equations. Thirdly with the aid of symbolic computation, we choose the KdV equation, the coupled variant Boussinesq equation and the cubic nonlinear Schrödinger equation to illustrate our method. As a result many types of solutions are obtained. These show that this method is simple and powerful to obtain more exact solutions including doubly-periodic solutions, soliton solutions and singly-periodic solutions to a wide class of nonlinear wave equations. Finally we further extended the method to a general form.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Tang ◽  
Xuemin Wang ◽  
Yingzhe Fan ◽  
Junfeng Qu

By using solutions of an ordinary differential equation, an auxiliary equation method is described to seek exact solutions of variable-coefficient KdV-MKdV equation. As a result, more new exact nontravelling solutions, which include soliton solutions, combined soliton solutions, triangular periodic solutions, Jacobi elliptic function solutions, and combined Jacobi elliptic function solutions, for the KdV-MKdV equation are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solving many other nonlinear partial differential equations with variable coefficients in mathematical physics.


2021 ◽  
pp. 2150464
Author(s):  
Shailendra Singh ◽  
S. Saha Ray

In this paper, variable coefficients mKdV equation is examined by using Painlevé analysis and auto-Bäcklund transformation method. The proposed equation is an important equation in magnetized dusty plasmas. The Painlevé analysis is used to determine the integrability whereas an auto-Bäcklund transformation technique is being explored to derive unique family of analytical solutions for variable coefficients mKdV equation. New kink–antikink and periodic-kink- type soliton solutions have been determined successfully for the considered equation. This paper shows that auto-Bäcklund transformation method is effective, direct and easy to use, and used to determine the analytic soliton solutions of various nonlinear evolution equations in the field of science and engineering. The results are plotted graphically to signify the potency and applicability of this proposed scheme for solving the above considered equation. The obtained results are in the form of soliton-like solutions, solitary wave solutions, exponential and trigonometric function solutions. Therefore, these solutions help us to understand the potential and physical behaviors of the proposed equation.


2011 ◽  
Vol 66 (10-11) ◽  
pp. 625-631
Author(s):  
Abdul-Majid Wazwaz

We make use of Hirota’s bilinear method with computer symbolic computation to study a variety of coupled modified Korteweg-de Vries (mKdV) equations. Multiple soliton solutions and multiple singular soliton solutions are obtained for each coupled equation. The resonance phenomenon of each coupled mKdV equation is proved not to exist.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaoxiao Zheng ◽  
Yadong Shang ◽  
Yong Huang

This paper is concerned with the variable coefficients mKdV (VC-mKdV) equation. First, through some transformation we convert VC-mKdV equation into the constant coefficient mKdV equation. Then, using the first integral method we obtain the exact solutions of VC-mKdV equation, such as rational function solutions, periodic wave solutions of triangle function, bell-shape solitary wave solution, kink-shape solitary wave solution, Jacobi elliptic function solutions, and Weierstrass elliptic function solution. Furthermore, with the aid of Mathematica, the extended hyperbolic functions method is used to establish abundant exact explicit solution of VC-mKdV equation. By the results of the equation, the first integral method and the extended hyperbolic function method are extended from the constant coefficient nonlinear evolution equations to the variable coefficients nonlinear partial differential equation.


2018 ◽  
Vol 36 (2) ◽  
pp. 185
Author(s):  
Abdelouaheb Ardjouni ◽  
Ahcene Djoudi

Let T be a periodic time scale. The purpose of this paper is to use Krasnoselskii's fixed point theorem to prove the existence of positive periodic solutions for nonlinear neutral dynamic equations with variable coefficients on a time scale. We invert these equations to construct a sum of a contraction and a compact map which is suitable for applying the Krasnoselskii's theorem. The results obtained here extend the work of Candan <cite>c1</cite>.


Sign in / Sign up

Export Citation Format

Share Document