A new N-soliton solutions for a generalized mKdV equation with variable coefficients

2016 ◽  
Vol 10 ◽  
pp. 45-56 ◽  
Author(s):  
O. Alsayyed ◽  
Feras Shatat ◽  
H. M. Jaradat
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Tang ◽  
Xuemin Wang ◽  
Yingzhe Fan ◽  
Junfeng Qu

By using solutions of an ordinary differential equation, an auxiliary equation method is described to seek exact solutions of variable-coefficient KdV-MKdV equation. As a result, more new exact nontravelling solutions, which include soliton solutions, combined soliton solutions, triangular periodic solutions, Jacobi elliptic function solutions, and combined Jacobi elliptic function solutions, for the KdV-MKdV equation are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solving many other nonlinear partial differential equations with variable coefficients in mathematical physics.


2021 ◽  
pp. 2150464
Author(s):  
Shailendra Singh ◽  
S. Saha Ray

In this paper, variable coefficients mKdV equation is examined by using Painlevé analysis and auto-Bäcklund transformation method. The proposed equation is an important equation in magnetized dusty plasmas. The Painlevé analysis is used to determine the integrability whereas an auto-Bäcklund transformation technique is being explored to derive unique family of analytical solutions for variable coefficients mKdV equation. New kink–antikink and periodic-kink- type soliton solutions have been determined successfully for the considered equation. This paper shows that auto-Bäcklund transformation method is effective, direct and easy to use, and used to determine the analytic soliton solutions of various nonlinear evolution equations in the field of science and engineering. The results are plotted graphically to signify the potency and applicability of this proposed scheme for solving the above considered equation. The obtained results are in the form of soliton-like solutions, solitary wave solutions, exponential and trigonometric function solutions. Therefore, these solutions help us to understand the potential and physical behaviors of the proposed equation.


2011 ◽  
Vol 66 (10-11) ◽  
pp. 625-631
Author(s):  
Abdul-Majid Wazwaz

We make use of Hirota’s bilinear method with computer symbolic computation to study a variety of coupled modified Korteweg-de Vries (mKdV) equations. Multiple soliton solutions and multiple singular soliton solutions are obtained for each coupled equation. The resonance phenomenon of each coupled mKdV equation is proved not to exist.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaoxiao Zheng ◽  
Yadong Shang ◽  
Yong Huang

This paper is concerned with the variable coefficients mKdV (VC-mKdV) equation. First, through some transformation we convert VC-mKdV equation into the constant coefficient mKdV equation. Then, using the first integral method we obtain the exact solutions of VC-mKdV equation, such as rational function solutions, periodic wave solutions of triangle function, bell-shape solitary wave solution, kink-shape solitary wave solution, Jacobi elliptic function solutions, and Weierstrass elliptic function solution. Furthermore, with the aid of Mathematica, the extended hyperbolic functions method is used to establish abundant exact explicit solution of VC-mKdV equation. By the results of the equation, the first integral method and the extended hyperbolic function method are extended from the constant coefficient nonlinear evolution equations to the variable coefficients nonlinear partial differential equation.


2012 ◽  
Vol 67 (10-11) ◽  
pp. 525-533
Author(s):  
Zhi-Qiang Lin ◽  
Bo Tian ◽  
Ming Wang ◽  
Xing Lu

Under investigation in this paper is a variable-coefficient coupled Gross-Pitaevskii (GP) system, which is associated with the studies on atomic matter waves. Through the Painlev´e analysis, we obtain the constraint on the variable coefficients, under which the system is integrable. The bilinear form and multi-soliton solutions are derived with the Hirota bilinear method and symbolic computation. We found that: (i) in the elastic collisions, an external potential can change the propagation of the soliton, and thus the density of the matter wave in the two-species Bose-Einstein condensate (BEC); (ii) in the shape-changing collision, the solitons can exchange energy among different species, leading to the change of soliton amplitudes.We also present the collisions among three solitons of atomic matter waves.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jin-Fu Liang ◽  
Xun Wang

A consistent Riccati expansion (CRE) method is proposed for obtaining interaction solutions to the modified Korteweg-de Vries (mKdV) equation. Using the CRE method, it is shown that interaction solutions such as the soliton-tangent (or soliton-cotangent) wave cannot be constructed for the mKdV equation. More importantly, exact soliton-cnoidal periodic wave interaction solutions are presented. While soliton-cnoidal interaction solutions were found to degenerate to special resonant soliton solutions for the values of modulus (n) closer to one (upper bound of modulus) in the Jacobi elliptic function, a normal kink-shaped soliton was observed for values of n closer to zero (lower bound).


Sign in / Sign up

Export Citation Format

Share Document