Isolation of cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase gene promoters from Leucaena leucocephala, a leguminous tree species, and characterization of tissue-specific activity in transgenic tobacco

2011 ◽  
Vol 108 (3) ◽  
pp. 421-436 ◽  
Author(s):  
S. Prashant ◽  
M. Sri Lakshmi Sunita ◽  
V. L. Sirisha ◽  
V. Vijaya Bhaskar ◽  
A. Maruthi Rao ◽  
...  
2001 ◽  
Vol 24 (1-4) ◽  
pp. 235-241 ◽  
Author(s):  
Rose Lucia Braz Ramos ◽  
Francisco Javier Tovar ◽  
Ricardo Magrani Junqueira ◽  
Fabiane Borges Lino ◽  
Gilberto Sachetto-Martins

Lignins are phenolic polymers found in the secondary wall of plant conductive systems where they play an important role by reducing the permeability of the cell wall to water. Lignins are also responsible for the rigidity of the cell wall and are involved in mechanisms of resistance to pathogens. The metabolic routes and enzymes involved in synthesis of lignins have been largely characterized and representative genes that encode enzymes involved in these processes have been cloned from several plant species. The synthesis of lignins is liked to the general metabolism of the phenylpropanoids in plants, having enzymes (e.g. phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H) and caffeic acid O-methyltransferase (COMT)) common to other processes as well as specific enzymes such as cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD). Some maize and sorghum mutants, shown to have defective in CAD and/or COMT activity, are easier to digest because they have a reduced lignin content, something which has motivated different research groups to alter the lignin content and composition of model plants by genetic engineering try to improve, for example, the efficiency of paper pulping and digestibility. In the work reported in this paper, we have made an inventory of the sugarcane expressed sequence tag (EST) coding for enzymes involved in lignin metabolism which are present in the sugarcane EST genome project (SUCEST) database. Our analysis focused on the key enzymes ferulate-5-hydroxylase (F5H), caffeic acid O-methyltransferase (COMT), caffeoyl CoA O-methyltransferase (CCoAOMT), hydroxycinnamate CoA ligase (4CL), cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD). The comparative analysis of these genes with those described in other species could be used as molecular markers for breeding as well as for the manipulation of lignin metabolism in sugarcane.


Sign in / Sign up

Export Citation Format

Share Document