End-to-end latency characterization of task communication models for automotive systems

2020 ◽  
Vol 56 (3) ◽  
pp. 315-347 ◽  
Author(s):  
Jorge Martinez ◽  
Ignacio Sañudo ◽  
Marko Bertogna
Author(s):  
Burak Erman ◽  
James E. Mark

The classical theories of rubber elasticity are based on the Gaussian chain model. The only molecular parameter that enters these theories is the mean-square end-to-end separation of the chains constituting the network. However, there are various areas of interest that require characterization of molecular quantities beyond the Gaussian description. Examples are segmental orientation, birefringence, rotational isomerization, and finite extensibility, and we will address these properties in the following chapters. One often needs a more realistic distribution function for the end-to-end vector, as well as for averages of the products of several vectorial quantities, as will be evident in these chapters. The foundations for such characterizations, and several examples of their applications, are given in this chapter. Several aspects of rubber elasticity (such as the dependence of the elastic free energy on network topology, number of effective junctions, and contributions from entanglements) are successfully explained by theories based on the freely jointed chain and the Gaussian approximation. Details of the real chemical structure are not required at the length scales describing these phenomena. On the other hand, studies of birefringence, thermoelasticity, rotational isomerization upon stretching, strain dichroism, local segmental orientation and mobility, and characterization of networks with short chains require the use of more realistic network chain models. In this section, properties of rotational isomeric state models for the chains are discussed. The notation is based largely on the Flory book, Statistical Mechanics of Chain Molecules. More recent information is readily found in the literature. Due to the simplicity of its structure, a polyethylene-like chain serves as a convenient model for discussing the statistical properties of real chains. This simplicity can be seen in figure 8.1, which shows the planar form of a small portion of a polyethylene chain. Bond lengths and bond angles may be regarded as fixed in the study of rubber elasticity because their rapid fluctuations are usually in the range of only ±0.05 A and ±5°, respectively. The chain changes its configuration only through torsional rotations about the backbone bonds, shown, for example, by the angle for the ith bond in figure 8.1.


2019 ◽  
Vol 9 (22) ◽  
pp. 4933 ◽  
Author(s):  
Sergej Bock ◽  
Christian Kijatkin ◽  
Dirk Berben ◽  
Mirco Imlau

This paper addresses the challenging task of optical characterization of pure, dielectric (nano-)powders with the aim to provide an end-to-end instruction from appropriate sample preparation up to the determination of material remission and absorption spectra. We succeeded in establishing an innovative preparation procedure to reproducibly obtain powder pellet samples with an ideal Lambertian scattering behavior. As a result, a procedure based on diffuse reflectance spectroscopy was developed that allows for (i) performing reproducible and artifact-free, high-quality measurements as well as (ii) a thorough optical analysis using Monte Carlo and Mie scattering simulations yielding the absorption spectrum in the visible spectral range. The procedure is valid for the particular case of powders that can be compressed into thick, non-translucent pellets and neither requires embedding of the dielectric (nano-)powders within an appropriate host matrix for measurements nor the use of integrating spheres. The reduced spectroscopic procedure minimizes the large number of sources for errors, enables an in-depth understanding of non-avoidable artifacts and is of particular advantage in the field of material sciences, i.e., for getting first insights to the optical features of a newly synthesized, pure dielectric powder, but also as an inline inspection tool for massively parallelised material characterization.


2018 ◽  
Vol 14 (4) ◽  
pp. 8-13 ◽  
Author(s):  
Matthias Becker ◽  
Dakshina Dasari ◽  
Saad Mubeen ◽  
Moris Behnam ◽  
Thomas Nolte

Author(s):  
Óscar Soto-Sánchez ◽  
Michel Maes-Bermejo ◽  
Micael Gallego ◽  
Francisco Gortázar

AbstractEnd-to-end tests present many challenges in the industry. The long-running times of these tests make it unsuitable to apply research work on test case prioritization or test case selection, for instance, on them, as most works on these two problems are based on datasets of unit tests. These ones are fast to run, and time is not usually a considered criterion. This is because there is no dataset of end-to-end tests, due to the infrastructure needs for running this kind of tests, the complexity of the setup and the lack of proper characterization of the faults and their fixes. Therefore, running end-to-end tests for any research work is hard and time-consuming, and the availability of a dataset containing regression bugs, documentation and logs for these tests might foster the usage of end-to-end tests in research works. This paper presents a) a dataset for this kind of tests, including six well-documented manually injected regression bugs and their corresponding fixes in three web applications built using Java and the Spring framework; b) tools for easing the execution of these tests no matter the infrastructure; and c) a comparative study with two well-known datasets of unit tests. The comparative study shows that there are important differences between end-to-end and unit tests, such as their execution time and the amount of resources they consume, which are much higher in the end-to-end tests. End-to-end testing deserves some attention from researchers. Our dataset is a first effort toward easing the usage of end-to-end tests in research works.


1971 ◽  
Vol 51 (1) ◽  
pp. 249-264 ◽  
Author(s):  
David D. Wood ◽  
David J. L. Luck

A paracrystal indistinguishable from the one which occurs in the mitochondrial mutant abnormal-1 can be induced in wild-type Neurospora crassa after growth in either ethidium or euflavine. This paracrystal has been isolated and partially characterized. It appears to be composed of a single polypeptide (mol wt 68,000) which can be reversibly crystallized and dissociated by changes in the pH and ionic strength. When aggregated, the polypeptide forms oligomers which are arranged end-to-end into fibers. During the characterization of the polypeptide, it was found that the polypeptide's electrophoretic and immunological properties could be used as assays. Using these methods it was found that the polypeptide normally accumulates in a soluble form in the cytoplasm of wild-type Neurospora at the end of the log-phase of growth.


Sign in / Sign up

Export Citation Format

Share Document