scholarly journals Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation

Author(s):  
Xu Chu ◽  
Wenkang Wang ◽  
Guang Yang ◽  
Alexandros Terzis ◽  
Rainer Helmig ◽  
...  

AbstractTurbulence transportation across permeable interfaces is investigated using direct numerical simulation, and the connection between the turbulent surface flow and the pore flow is explored. The porous media domain is constructed with an in-line arranged circular cylinder array. The effects of Reynolds number and porosity are also investigated by comparing cases with two Reynolds numbers ($$Re\approx 3000,6000$$ R e ≈ 3000 , 6000 ) and two porosities ($$\varphi =0.5,0.8$$ φ = 0.5 , 0.8 ). It was found that the change of porosity leads to the variation of flow motions near the interface region, which further affect turbulence transportation below the interface. The turbulent kinetic energy (TKE) budget shows that turbulent diffusion and pressure transportation work as energy sink and source alternatively, which suggests a possible route for turbulence transferring into porous region. Further analysis on the spectral TKE budget reveals the role of modes of different wavelengths. A major finding is that mean convection not only affects the distribution of TKE in spatial space, but also in scale space. The permeability of the wall also have an major impact on the occurrence ratio between blow and suction events as well as their corresponding flow structures, which can be related to the change of the Kármán constant of the mean velocity profile.

2015 ◽  
Vol 774 ◽  
pp. 395-415 ◽  
Author(s):  
Myoungkyu Lee ◽  
Robert D. Moser

A direct numerical simulation of incompressible channel flow at a friction Reynolds number ($\mathit{Re}_{{\it\tau}}$) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Kármán constant ${\it\kappa}=0.384\pm 0.004$. There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits $k^{-1}$ dependence over a short range in wavenumber $(k)$. Further, consistent with previous experimental observations, when these spectra are multiplied by $k$ (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the $k^{-1}$ range.


Author(s):  
Masayoshi Okamoto

The direct numerical simulation (DNS) of the fully developed turbulent channel flows rotating along the streamwise direction with several rotation parameters and two Reynolds numbers is performed. The bulk mean velocity decreases with increasing the rotation parameter, but the decrement is weakened in the high Reynolds number case. Applying the second-kind Chebyshev polynomial expansion into the mean spanwise velocity, the second mode coefficient, which becomes large in the strong rotation, is greatly influenced by the Reynolds number effect. Due to the streamwise rotation, the derivative and integral length scales obtained from the streamwise two-point correlation are extended. From viewpoints of the quadrant analysis, spectral one and instantaneous visualization, the high correlation among three fluctuating velocity components appears and the low-speed streaks are accumulated in the strong rotation and high Reynolds number flow.


2001 ◽  
Vol 123 (2) ◽  
pp. 382-393 ◽  
Author(s):  
Hiroyuki Abe ◽  
Hiroshi Kawamura ◽  
Yuichi Matsuo

Direct numerical simulation (DNS) of a fully developed turbulent channel flow for various Reynolds numbers has been carried out to investigate the Reynolds number dependence. The Reynolds number is set to be Reτ=180, 395, and 640, where Reτ is the Reynolds number based on the friction velocity and the channel half width. The computation has been executed with the use of the finite difference method. Various turbulence statistics such as turbulence intensities, vorticity fluctuations, Reynolds stresses, their budget terms, two-point correlation coefficients, and energy spectra are obtained and discussed. The present results are compared with the ones of the DNSs for the turbulent boundary layer and the plane turbulent Poiseuille flow and the experiments for the channel flow. The closure models are also tested using the present results for the dissipation rate of the Reynolds normal stresses. In addition, the instantaneous flow field is visualized in order to examine the Reynolds number dependence for the quasi-coherent structures such as the vortices and streaks.


2021 ◽  
Vol 1877 (1) ◽  
pp. 012035
Author(s):  
Shengxiang Lin ◽  
Huanxiong Xia ◽  
Zhenyu Zhang ◽  
Jianhua Liu ◽  
Honglei Wang

Author(s):  
Atsushi Sakurai ◽  
Koji Matsubara ◽  
Shigenao Maruyama

Importance of turbulence and radiation interaction (TRI) has been investigated in a turbulent channel flow by using direct numerical simulation (DNS) to clarify detailed turbulent flow structure and heat transfer mechanisms. To investigate the effect of correlation functions between gas absorption and temperature fluctuation, the two cases of correlation are tested. Consequently, the TRI effect can be clearly observed when the correlation is positive. This fact provides the evidence that radiative intensity is enhanced by the turbulent fluctuation. The DNS results suggest the significance in the fundamental aspect of TRI. Furthermore, effects of frictional Reynolds number, Reτ, are investigated. Comparing with the case of Reτ = 150, the location of the enhancement peaks of Reτ = 300 shifts toward the walls. It is found that the relative importance of the TRI correspond to the structure of temperature fluctuation intensity originated from the differences of the Reτ.


2001 ◽  
Author(s):  
Shriram B. Pillapakkam ◽  
Pushpendra Singh

Abstract A three dimensional finite element scheme for Direct Numerical Simulation (DNS) of viscoelastic two phase flows is implemented. The scheme uses the Level Set Method to track the interface and the Marchuk-Yanenko operator splitting technique to decouple the difficulties associated with the governing equations. Using this numerical scheme, the shape of Newtonian drops in a simple shear flow of viscoelastic fluid and vice versa are analyzed as a function of Capillary number, Deborah number and polymer concentration. The viscoelastic fluid is modeled via the Oldroyd-B model. The role of viscoelastic stresses in deformation of a drop subjected to simple shear flow and its effect on the steady state shape is analyzed. Our results compare favorably with existing experimental data and also help in understanding the role of viscoelastic stresses in drop deformation.


Sign in / Sign up

Export Citation Format

Share Document