scholarly journals Methanol dynamics in H-ZSM-5 with Si/Al ratio of 25: a quasi-elastic neutron scattering (QENS) study

Author(s):  
Santhosh K. Matam ◽  
C. Richard A. Catlow ◽  
Ian P. Silverwood ◽  
Alexander J. O’Malley

AbstractMethanol dynamics in zeolite H-ZSM-5 (Si/Al of 25) with a methanol loading of ~ 30 molecules per unit cell has been studied at 298, 323, 348 and 373 K by incoherent quasi-elastic neutron scattering (QENS). The elastic incoherent structure factor (EISF) reveals that the majority of methanol is immobile, in the range between 70 and 80%, depending on the measurement temperature. At 298 K, ≈ 20% methanol is mobile on the instrumental timescale, exhibiting isotropic rotational dynamics with a rotational diffusion coefficient (DR) of 4.75 × 1010 s−1. Upon increasing the measurement temperature from 298 to 323 K, the nature of the methanol dynamics changes from rotational to translational diffusion dynamics. Similar translational diffusion rates are measured at 348 and 373 K, though with a larger mobile fraction as temperature increases. The translational diffusion is characterised as jump diffusion confined to a sphere with a radius close to that of a ZSM-5 channel. The diffusion coefficients may be calculated using either the Volino–Dianoux (VD) model of diffusion confined to a sphere, or the Chudley–Elliot (CE) jump diffusion model. The VD model gives rise to a self-diffusion co-efficient (Ds) of methanol in the range of 7.8–8.4 × 10–10 m2 s−1. The CE model gives a Ds of around 1.2 (± 0.1) × 10–9 m2 s−1 with a jump distance of 2.8 (either + 0.15 or − 0.1) Å and a residence time (τ) of ~ 10.8 (either + 0.1 or − 0.2) ps. A correlation between the present and earlier studies that report methanol dynamics in H-ZSM-5 with Si/Al of 36 is made, suggesting that with increasing Si/Al ratio, the mobile fraction of methanol increases while DR decreases.

Author(s):  
Alexander J. O'Malley ◽  
Victoria García Sakai ◽  
Nikolaos Dimitratos ◽  
Wilm Jones ◽  
C. Richard A. Catlow ◽  
...  

Dynamical behaviour of n- octane and 2,5-dimethylhexane in H-ZSM-5 zeolite catalysts of differing Si/Al ratios (15 and 140) was probed using quasi-elastic neutron scattering, to understand molecular shape and Brønsted acid site density effects on the behaviour of common species in the fluid catalytic cracking (FCC) process, where H-ZSM-5 is an additive catalyst. Between 300 and 400 K, n -octane displayed uniaxial rotation around its long axis. However, the population of mobile molecules was larger in H-ZSM-5(140), suggesting that the lower acid site concentration allows for more molecules to undergo rotation. The rotational diffusion coefficients were higher in H-ZSM-5(140), reflecting this increase in freedom. 2,5-dimethylhexane showed qualitative differences in behaviour to n -octane, with no full molecule rotation, probably due to steric hindrance in the constrictive channels. However, methyl group rotation in the static 2,5-dimethylhexane molecules was observed, with lower mobile fractions in H-ZSM-5(15), suggesting that this rotation is less hindered when fewer Brønsted sites are present. This was further illustrated by the lower activation barrier calculated for methyl rotation in H-ZSM-5(140). We highlight the significant immobilizing effect of isomeric branching in this important industrial catalyst and show how compositional changes of the zeolite can affect a range of dynamical behaviours of common FCC species upon adsorption. This article is part of a discussion meeting issue ‘Science to enable the circular economy’.


2004 ◽  
Vol 76 (1) ◽  
pp. 133-139 ◽  
Author(s):  
T. Tassaing ◽  
Y. Danten ◽  
M. Besnard

This paper is a study of the structure and dynamics of near-critical and supercritical water for thermodynamic states above the critical temperature in a wide range of density by infrared absorption and quasi-elastic neutron scattering. The evolution of the shape of the infrared profiles associated with the internal vibrational modes of water has been investigated. In supercritical water, at T = 380 °C and low pressure (density), in the range 25-50 bar (0.01-0.05 g·cm-3), only monomers are detected. A progressive increase of the pressure (density) from 50 to 250 bar (from 0.05 to 0.4 g·cm-3) leads to the appearance of dimers and trimers. In order to obtain information on the dynamics, we have performed incoherent quasi-elastic neutron-scattering experiments on light water for several thermodynamic states (200 < T < 400 °C and 184 < P < 400 bar) corresponding to densities ranging from 0.2 to 0.9 g·cm-3. The results have been analyzed using a jump diffusion model and the two parameters of this model, namely, τ0, the residence time and D, the translational diffusion coefficient, have been determined as a function of the density.


2021 ◽  
Vol 9 ◽  
Author(s):  
Massimo Bonini ◽  
Emiliano Fratini ◽  
Antonio Faraone

Neutron scattering methods were employed to study the microscopic structure and dynamics of Bio Crude Oils (BCOs) and their lignin fractions. The structure of the carbonaceous aggregates was investigated using Small Angle Neutron Scattering to reveal a fractal hierarchy as well as a growth of the aggregates as the aging of the BCO proceeds. Elastic Neutron Scattering measurements indicate that BCO liquid phase, comprised of water and other hydrogenated molecular liquids, is in a state of extreme confinement. Quasi-Elastic Neutron Scattering yields information on the molecular motions, indicating that long range translational diffusion is suppressed and only localized dynamics take place on the tens of picosecond time range. The obtained results provide quantitative information on the molecular activity, as aging proceed, in these reactive materials of relevance as potential renewable energy sources.


1995 ◽  
Vol 73 (11-12) ◽  
pp. 687-696 ◽  
Author(s):  
Myer Bloom ◽  
Thomas M. Bayerl

After reviewing some of the basic measurements that characterize the study of physical properties of matter using neutron scattering and nuclear magnetic resonance (NMR), connections between information obtained in current research on fluid membranes using these two complementary techniques are explored in two major chapters. In the first, the type of information on the structure of fluid membranes obtained from coherent elastic neutron scattering is compared with that from NMR spectral characteristics. Then, the type of information obtained on dynamical properties from NMR relaxation (T1 and T2) measurements is compared with that from quasi-elastic neutron scattering. Examples of such connections are given with an emphasis on relationships between the time and distance scales intrinsic to neutron scattering and NMR.


Sign in / Sign up

Export Citation Format

Share Document