On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools

2012 ◽  
Vol 21 (4) ◽  
pp. 699-713 ◽  
Author(s):  
V. Duranthon ◽  
N. Beaujean ◽  
M. Brunner ◽  
K. E. Odening ◽  
A. Navarrete Santos ◽  
...  
2015 ◽  
Vol 2016 (1) ◽  
pp. 4-22 ◽  
Author(s):  
M. I. Stamou ◽  
K. H. Cox ◽  
William F. Crowley

Abstract The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the “known” genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603–621, 2015)


2015 ◽  
Vol 36 (6) ◽  
pp. 603-621 ◽  
Author(s):  
M. I. Stamou ◽  
K. H. Cox ◽  
William F. Crowley

Abstract The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the “known” genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3) substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery.


Author(s):  
Samantha Teixeira ◽  
Astraea Augsberger ◽  
Katie Richards-Schuster ◽  
Linda Sprague Martinez ◽  
Kerri Evans

The Grand Challenges for Social Work initiative, led by the American Academy of Social Work and Social Welfare (AASWSW), aims to organize the social work profession around 12 entrenched societal challenges. Addressing the root causes of the Grand Challenges will take a coordinated effort across all of social work practice, but given their scale, macro social work will be essential. We use Santiago and colleagues’ Frameworks for Advancing Macro Practice to showcase how macro practices have contributed to local progress on two Grand Challenges. We offer recommendations and a call for the profession to invest in and heed the instrumental role of macro social work practice to address the Grand Challenges.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


2001 ◽  
Vol 1 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Yumi Yamamoto ◽  
Richard Gaynor
Keyword(s):  

Author(s):  
Jill Escher ◽  
Victor Corces ◽  
Isabelle Mansuy ◽  
Wei Yan

Sign in / Sign up

Export Citation Format

Share Document