Intraspecific variation in seedling growth responses of a relict tree species Euptelea pleiospermum to precipitation manipulation along an elevation gradient

Plant Ecology ◽  
2021 ◽  
Author(s):  
Hao Wu ◽  
Xinzeng Wei ◽  
Mingxi Jiang
2016 ◽  
Vol 64 (4) ◽  
Author(s):  
Eduardo Chacón ◽  
Juan Manuel López-Ley ◽  
Gerardo Ávalos

Successful forest restoration in tropical environments is limited by the paucity of studies on the initial establishment and early survival requirements of seedlings of most native tropical tree species under disturbed conditions. Here, we evaluated the initial growth responses and the regeneration potential of seedlings of five tree species native to Costa Rica (Hasseltia floribunda, Inga densiflora, Persea americana, Tapirira mexicana and Trichilia pittieri). Seedlings were grown in secondary forests and adjacent open pastures under contrasting conditions of light availability. We quantified seedling growth, survival and herbivory from August 2010 to August 2011 on a monthly basis, and measured differences in leaf mass per area (LMA) at the end of the experiment. We found significant variation in growth responses between the understory of secondary forests and pastures. Growth in height was highest in pastures across all species, with I. densiflora, P. americana and T. mexicana showing the most striking differences. In contrast, H. floribunda and T. pittieri did not show differences in diameter growth between environments. Except for T. mexicana, herbivory increased throughout the experiment in all the species. Herbivory increased faster in pastures for H. floribunda and T. pittieri and showed higher rates in the forest understory for I. densiflora and P. americana. Seedling survival showed significant differences for all species across environments. Survival of H. floribunda and I. densiflora was higher in secondary forests, whereas the other species showed higher survival in pastures. Leaf mass per area showed higher values in the forest understory across all species. Due to their rapid growth and high survival, I. densiflora and T. mexicana showed great potential to restore abandoned pastures and secondary forests. Increasing our knowledge on the response of seedlings under disturbed conditions in tropical ecosystems is critical for improving the restoration of altered environments by matching the ecological amplitude of native species with specific environmental conditions


1990 ◽  
Vol 20 (9) ◽  
pp. 1479-1484 ◽  
Author(s):  
F. A. Bazzaz ◽  
J. S. Coleman ◽  
S. R. Morse

We examined how elevated CO2 affected the growth of seven co-occurring tree species: American beech (Fagusgrandifolia Ehrh.), paper birch (Betulapapyrifera Marsh.), black cherry (Prunusserotina Ehrh.), white pine (Pinusstrobus L.), red maple (Acerrubrum L.), sugar maple (Acersaccharum Marsh.), and eastern hemlock (Tsugacanadensis (L.) Carr). We also tested whether the degree of shade tolerance of species and the age of seedlings affected plant responses to enhanced CO2 levels. Seedlings that were at least 1 year old, for all species except beech, were removed while dormant from Harvard Forest, Petersham, Massachusetts. Seeds of red maple and paper birch were obtained from parent trees at Harvard Forest, and seeds of American beech were obtained from a population of beeches in Nova Scotia. Seedlings and transplants were grown in one of four plant growth chambers for 60 d (beech, paper birch, red maple, black cherry) or 100 d (white pine, hemlock, sugar maple) under CO2 levels of 400 or 700 μL•L−1. Plants were then harvested for biomass and growth determinations. The results showed that the biomass of beech, paper birch, black cherry, sugar maple, and hemlock significantly increased in elevated CO2, but the biomass of red maple and white pine only marginally increased in these conditions. Furthermore, there were large differences in the magnitude of growth enhancement by increased levels of CO2 between species, so it seems reasonable to predict that one consequence of rising levels of CO2 may be to increase the competitive ability of some species relative to others. Additionally, the three species exhibiting the largest increase in growth with increased CO2 concentrations were the shade-tolerant species (i.e., beech, sugar maple, and hemlock). Thus, elevated CO2 levels may enhance the growth of relatively shade-tolerant forest trees to a greater extent than growth of shade-intolerant trees, at least under the light and nutrient conditions of this experiment. We found no evidence to suggest that the age of tree seedlings greatly affected their response to elevated CO2 concentrations.


2020 ◽  
Author(s):  
Olivia L. Cope ◽  
Richard L. Lindroth ◽  
Andrew Helm ◽  
Ken Keefover‐Ring ◽  
Eric L. Kruger

2018 ◽  
Vol 107 (3) ◽  
pp. 1051-1066 ◽  
Author(s):  
Kyle W. Tomlinson ◽  
Frank J. Sterck ◽  
Eduardo R. M. Barbosa ◽  
Steven de Bie ◽  
Herbert H. T. Prins ◽  
...  

2020 ◽  
Vol 225 (6) ◽  
pp. 2314-2330
Author(s):  
Jessie M. Godfrey ◽  
Jason Riggio ◽  
Jessica Orozco ◽  
Paula Guzmán‐Delgado ◽  
Alana R. O. Chin ◽  
...  

2005 ◽  
Vol 62 (5) ◽  
pp. 423-428 ◽  
Author(s):  
Águeda Mª González-Rodríguez ◽  
Mª Soledad Jiménez ◽  
Domingo Morales

Interação ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 61-84
Author(s):  
Gildomar Alves dos Santos ◽  
David Francis Robert Philip Burslem ◽  
Milton Serpa de Meira Jr ◽  
Stanislau Parreira Cardozo

Experimental restoration using tree seedlings is a common strategy for accelerating succession on degraded post-agricultural land formerly occupied by Cerrado vegetation. Seedling growth in degraded tropical lands is constrained by various factors. The goal of this study was to evaluate the seedling growth and survival of seven native tree species used to accelerate forest recovery in a gully area with stressful environmental conditions. The experimental design involved fenced and unfenced blocks, presence and absence of fertilization and use of an adhesive to prevent ant herbivory (four treatments with four replicates). Seedlings were planted in December 2006 and collection of data on seedling basal diameter, height, mortality and herbivory started on January 24th 2007 and continued every three months, until final data collection on January 31st 2009 (9 measurement dates). Overall seedling survival was 38 % and protecting seedlings did not influence growth, but seedlings grew faster in response to the addition of fertilizer containing N, P and K. The use of the adhesive Tanglefoot to exclude leaf cutter ants had no influence on growth. Fencing reduced seedling mortality, but combining fencing with Tanglefoot did not. Nutrient availability limits seedling growth and survival in the gully. Direct planting of seedlings of native trees may accelerate succession in degraded Cerrado lands subject to interventions that overcome constraints on seedling growth and survival.


2005 ◽  
Vol 53 (8) ◽  
pp. 789 ◽  
Author(s):  
Luzimar Campos da Silva ◽  
Aristéa Alves Azevedo ◽  
Eldo Antônio Monteiro da Silva ◽  
Marco Antonio Oliva

Seedlings and young saplings of some woody species were exposed to simulated low-pH acid rain, in order to develop a response screening for tropical tree species by determination of the symptoms of foliar injury and growth responses, as well as to identify anatomical alterations in the leaf blade of the most sensitive species. Gallesia integrifolia (Spreng.) Harms, Genipa americana L., Joannesia princeps Vell., Mimosa artemisiana Heringer & Paula and Spondias dulcis Forst.f. were exposed daily to 20 min of acid rain, pH 3.0, for 10 consecutive days. The degree of leaf damage and the anatomical alterations observed were efficient parameters to determine the sensitivity to acid rain. At the end of the experiment J. princeps was the most sensitive species as determined by foliar injury and seedling growth. The degree of leaf damage was similar among the seedlings, except in S. dulcis, which showed reduced percentage of foliar injury. Necrotic and chlorotic spots on the leaf blade occurred. In the most sensitive species, J. princeps, necrotic blade tissues showed accumulation of phenolic compounds, hypertrophy and collapsed cells. Most of the structural alterations were observed in the adaxial epidermis, the palisade parenchyma and spongy parenchyma and the abaxial epidermis. Long-term experiments with seedlings of S. dulcis and saplings of G. integrifolia are suggested, to characterise the response of these species that presented fewer symptoms but whose growth was affected under acid rain.


Sign in / Sign up

Export Citation Format

Share Document