Ray fractions and carbohydrate dynamics of tree species along a 2750 m elevation gradient indicate climate response, not spatial storage limitation

2020 ◽  
Vol 225 (6) ◽  
pp. 2314-2330
Author(s):  
Jessie M. Godfrey ◽  
Jason Riggio ◽  
Jessica Orozco ◽  
Paula Guzmán‐Delgado ◽  
Alana R. O. Chin ◽  
...  
2015 ◽  
Vol 45 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Symone Maria de Melo FIGUEIREDO ◽  
Eduardo Martins VENTICINQUE ◽  
Evandro Orfanó FIGUEIREDO ◽  
Evandro José Linhares FERREIRA

Species distribution modeling has relevant implications for the studies of biodiversity, decision making about conservation and knowledge about ecological requirements of the species. The aim of this study was to evaluate if the use of forest inventories can improve the estimation of occurrence probability, identify the limits of the potential distribution and habitat preference of a group of timber tree species. The environmental predictor variables were: elevation, slope, aspect, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). To estimate the distribution of species we used the maximum entropy method (Maxent). In comparison with a random distribution, using topographic variables and vegetation index as features, the Maxent method predicted with an average accuracy of 86% the geographical distribution of studied species. The altitude and NDVI were the most important variables. There were limitations to the interpolation of the models for non-sampled locations and that are outside of the elevation gradient associated with the occurrence data in approximately 7% of the basin area. Ceiba pentandra (samaúma), Castilla ulei (caucho) and Hura crepitans (assacu) is more likely to occur in nearby water course areas. Clarisia racemosa (guariúba), Amburana acreana (cerejeira), Aspidosperma macrocarpon (pereiro), Apuleia leiocarpa (cumaru cetim), Aspidosperma parvifolium (amarelão) and Astronium lecointei (aroeira) can also occur in upland forest and well drained soils. This modeling approach has potential for application on other tropical species still less studied, especially those that are under pressure from logging.


2021 ◽  
Author(s):  
Wangya Han ◽  
Li Chen ◽  
G. Geoff Wang ◽  
Dan Liu ◽  
Guohua Liu

Abstract Background: Gap size and environmental gradient have fundamental influence on the tree species coexistence and community assembly. We studied the regeneration and coexistence of three co-dominant tree species in three different gap size (large gap, 201-402 m2; medium gap, 101-200 m2; small gap, 38.8-100 m2) along an elevation gradient (between 3000m and 3500m) in an old-growth forest, on Mount Nadu in southwest China. Results: We found that the photosynthetic photon flux density (PPFD) was positively affected by gap size during the growing season. All three species had a higher regeneration density in large gaps, but the detailed response to treatments for each species depended on its stem size. Gap size had a significant positive effect on the regeneration density of Abies faxoniana small trees and Betula utilis saplings, but had no significant effect on Acer maximowiczii regeneration density. Saplings regeneration density is more sensitive to elevation compared to small trees regeneration density. Large gaps magnified the negative effects of elevation on regeneration density. Our findings indicated that Abies may maintain its regeneration advantage with low-intensity canopy disturbance, and large gap may provide excellent opportunities for broadleaf species (Betula and Acer) establishment and regeneration in this subalpine coniferous forest. Conclusion: Microhabitats heterogeneity controlled by characteristics of forest gaps along an elevation affected regeneration niche difference of tree species, which contributed to species coexistence and community assembly processes.


Author(s):  
Franklin Bantar Nworo ◽  
Njoh Roland Ndah ◽  
Egbe Enow Andrew

Tropical montane forests are considered to be one of the most species diverse ecosystems. These areas pose specific edaphic and environmental characteristics which enable these areas to harbour wide varieties of organisms. Some of these organisms are threatened and others are endemic to the area. The quest for food and other resources has resulted to indiscriminate exploitation of these montane forest. This study aimed to investigate the stand structure, distribution patterns and regeneration status of six tree species (Nuxia congesta, Pittosporum mannii, Podocarpu slatifolius, Prunus africana, Schefflera abyssinica and Syzygium guineense) along altitudinal gradients in the Kilum-Ijim Forest Reserve, Cameroon. A total of six study plots of one hectare (100 x100 m) each were laid across a 120 m elevation gradient. Two plots were established at each altitudinal gradient with elevations 2377 m, 2437 m and 2497 m. Measurements were taken for tree height, diameter at breast height (DBH 1.3 m) for the tree and poles. The digital Vernier callipers were used to measure collar diameters of seedlings and saplings. The highest tree density of 385 stems/ha was recorded for N. congesta at altitude 2497 m while the least was 20 stems/ha for S. abyssinica at altitude 2377m. The highest seedling density was 1563 stems/ha recorded for P. mannii at altitude 2377m and the least was noted for S. abyssinica at all the three altitudinal gradients.  Nuxia congesta had the highest basal area of 8809.23m2/ha at altitude 2437 m and the least of 74.82m2/ha for P. latifolius at altitude 2437 m.  The highest IVI occurred in N. congesta (131.91) was recorded at altitude 2377 m and the least (24.91) occurred in P. latifolius at altitude 2437 m. The spatial distributions of studied tree species were generally clumped and irregular. The regenerations of species were generally poor, though fair regenerations were noticed for N. congesta and P. mannii. The results showed that the six tree species were highly disturbed by anthropogenic activities. It is therefore imperative to develop and implement effective conservation measures to sustain the biodiversity of this reserve.


2018 ◽  
Vol 30 ◽  
pp. 24-31 ◽  
Author(s):  
J.A. Ramirez ◽  
I.T. Handa ◽  
J.M. Posada ◽  
S. Delagrange ◽  
C. Messier

2000 ◽  
Vol 77 (12) ◽  
pp. 1744-1755 ◽  
Author(s):  
Bernhard Denneler ◽  
Yves Bergeron ◽  
Yves Bégin

The objective of this study was to evaluate the most important environmental factors determining the distribution of tree species within the riparian zone of Lake Duparquet, located in the southern boreal region of Quebec, Canada. Occurrence and relative basal area of 10 species were recorded within an altitudinal range of 200 cm above mean water level along 95 transects. Stepwise logistic regression and canonical correspondence analyses were performed on the overall data set as well as separately for the five geomorphological shore types distinguished (depositional flats, floodplains, beaches, terraces, and rock outcrops). The elevation gradient, representing seasonal floodings, is the main factor determining the distribution of the species. The differences between the geomorphological shore types with respect to composition and arrangement of the arborescent vegetation along the elevation gradient are at least partially explained by surficial substratum, topography, aspect, and fire. Exposure to wave activity seems to be of minor importance only. However, since they are the driving force of erosion and sedimentation, the waves are to a great part responsible for the morphological differentiation of the shoreline. The distribution of the tree species along a characteristic physiographic cross-section is illustrated for each geomorphological shore type.


2015 ◽  
Vol 166 (6) ◽  
pp. 408-419 ◽  
Author(s):  
Nicolas Bircher ◽  
Maxime Cailleret ◽  
Markus Huber ◽  
Harald Bugmann

Sensitivity of typical Swiss forest stands to climate change In Switzerland, first climate-induced changes of forest ecosystems can be observed. However, it is widely unknown how and to what extent the typical (widespread) forest stands will respond to future climate change. With the data of the third National forest inventory and the forest succession model ForClim we examined the development 71 typical stands under current and future climatic conditions (A2 emission scenario) with and without management, respectively. The simulations show a weak response until the middle of the century. In contrast, an increased sensitivity towards the end of the century becomes apparent, expressed by declines of basal area at lower elevations, respectively increases at higher elevations. The responses of forest stands are depending on site-specific characteristics. For example, Norway spruce is expected to decline up to higher elevations. Our results show an increase of deciduous tree species in higher elevation zones, particularly if management is applied. The impacts of climate change on important forest ecosystems services vary along a bioclimatic elevation gradient. Thereby, current forest management shows approaches how to at least partly counteract adverse effects of climate change. However, target- and site-specific strategies are needed and, particularly with regard to lower elevations, more knowledge on the potential of tree species to adapt is required.


Sign in / Sign up

Export Citation Format

Share Document