scholarly journals Cloning and sequence analysis of the N gene of porcine epidemic diarrhea virus LJB/03

Virus Genes ◽  
2006 ◽  
Vol 33 (2) ◽  
pp. 215-219 ◽  
Author(s):  
Ge Junwei ◽  
Li Baoxian ◽  
Tang Lijie ◽  
Li Yijing
Author(s):  
Saubel Ezrael A. Salamat ◽  
Therese Marie A. Collantes ◽  
Wenchie Marie L. Lumbera ◽  
Francis A. Tablizo ◽  
Christian Thomas M. Mutia ◽  
...  

2020 ◽  
Vol 240 ◽  
pp. 108511 ◽  
Author(s):  
Xian-Wei Wang ◽  
Mi Wang ◽  
Jing Zhan ◽  
Qian-Yu Liu ◽  
Lin-lin Fang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Dongliang Li ◽  
Yongtao Li ◽  
Yunchao Liu ◽  
Yumei Chen ◽  
Wenqiang Jiao ◽  
...  

Porcine epidemic diarrhea virus (PEDV) is the major pathogen that causes diarrhea and high mortality in newborn piglets with devastating impact to the pig industry. Recombination and mutation are the main driving forces of viral evolution and genetic diversity of PEDV. In 2016, an outbreak of diarrhea in piglets occurred in an intensive pig farm in Central China. A novel PEDV isolate (called HNAY) was successfully isolated from clinical samples. Sequence analysis and alignment showed that HNAY possessed 21-nucleotide (nt) insertion in its S1 gene, which has never been reported in other PEDV isolates. Moreover, the sequence of the insertion was identical with the sequence fragment in PEDV N gene. Notably, the HNAY strain exhibited two unique mutations (T500A and L521Y) in the neutralizing epitopes of the S1 protein that were different from those of other PEDV variant strains and CV777-based vaccine strains. Additionally, PEDV HNAY might be derived from a natural recombination between two Chinese variant PEDV strains. Animal experiments demonstrated that HNAY displayed higher pathogenicity compared with two other clinical isolates. This study lays the foundation for better understanding of the genetic evolution and molecular pathogenesis of PEDV.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 790
Author(s):  
Sung-Jae Kim ◽  
Van-Giap Nguyen ◽  
Thi-My-Le Huynh ◽  
Yong-Ho Park ◽  
Bong-Kyun Park ◽  
...  

Porcine epidemic diarrhea virus (PEDV) causes continuous, significant damage to the swine industry worldwide. By RT-PCR-based methods, this study demonstrated the ongoing presence of PEDV in pigs of all ages in Korea at the average detection rate of 9.92%. By the application of Bayesian phylogenetic analysis, it was found that the nucleocapsid (N) gene of PEDV could evolve at similar rates to the spike (S) gene at the order of 10−4 substitutions/site/year. Based on branching patterns of PEDV strains, three main N gene-base genogroups (N1, N2, and N3) and two sub-genogroups (N3a, N3b) were proposed in this study. By analyzing the antigenic index, possible antigenic differences also emerged in both the spike and nucleocapsid proteins between the three genogroups. The antigenic indexes of genogroup N3 strains were significantly lower compared with those of genogroups N1 and N2 strains in the B-cell epitope of the nucleocapsid protein. Similarly, significantly lower antigenic indexes in some parts of the B-cell epitope sequences of the spike protein (COE, S1D, and 2C10) were also identified. PEDV mutants derived from genetic mutations of the S and N genes may cause severe damage to swine farms by evading established host immunities.


2019 ◽  
Author(s):  
Min Tan ◽  
Guofei Ding ◽  
Xinna Cai ◽  
Shengliang Cao ◽  
Fangyuan Cong ◽  
...  

Abstract Background Many viral proteins specifically interact with cellular proteins to facilitate virus replication. Understanding these interactions can decipher the viral infection mechanism and provide potential targets for antiviral therapy. Porcine epidemic diarrhea virus (PEDV), the agent of PED, causes numerous economic losses for the swine industry each year. Till now, no effective vaccine or drugs are available to contain this disease. As a result, it is critical urgent to elucidate the PEDV interactome. The nucleocapsid (N) of PEDV plays an important role in viral replication. Results In this study, the N gene was cloned into pEGFP-C1 and transfected into 293T cells. The interactome of N was elucidated by label-free mass spectrometry. A total of 125 cellular proteins interacting with PEDV N protein were discovered, of which 4 cellular proteins, DHX9, NCL, KAP1, TCEA1, were confirmed by pull down, immunoprecipitation, and co-localization. Conclusions The interactome of N protein supplied a powerful tool to explore the role of N in PEDV infection and therapeutic targets.


Virology ◽  
1994 ◽  
Vol 198 (2) ◽  
pp. 466-476 ◽  
Author(s):  
Mariela Duarte ◽  
Kurt Tobler ◽  
Anne Bridgen ◽  
Denis Rasschaert ◽  
Mathias Ackermann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document