scholarly journals Development of a Duplex RT-PCR Targeting Both N Gene and S Gene for Detection of Porcine Epidemic Diarrhea Virus

2017 ◽  
Vol 06 (04) ◽  
pp. 131-136
Author(s):  
益旸 桑
Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 41 ◽  
Author(s):  
Chi-Fei Kao ◽  
Hui-Wen Chang

Porcine epidemic diarrhea virus (PEDV) has continuously caused severe economic losses to the global swine industries; however, no successful vaccine against PEDV has been developed. In this study, we generated four autologous recombinant viruses, including the highly virulent iPEDVPT-P5, attenuated iPEDVPT-P96, and two chimeric viruses (iPEDVPT-P5-96S and iPEDVPT-P96-5S) with the reciprocally exchanged spike (S) gene, to study the role of the S gene in PEDV pathogenesis. A deeper understanding of PEDV attenuation will aid in the rational design of a live attenuated vaccine (LAV) using reverse genetics system. Our results showed that replacing the S gene from the highly virulent iPEDVPT-P5 led to complete restoration of virulence of the attenuated iPEDVPT-P96, with nearly identical viral shedding, diarrhea pattern, and mortality rate as the parental iPEDVPT-P5. In contrast, substitution of the S gene with that from the attenuated iPEDVPT-P96 resulted in partial attenuation of iPEDVPT-P5, exhibiting similar viral shedding and diarrhea patterns as the parental iPEDVPT-P96 with slightly severe histological lesions and higher mortality rate. Collectively, our data confirmed that the attenuation of the PEDVPT-P96 virus is primarily attributed to mutations in the S gene. However, mutation in S gene alone could not fully attenuate the virulence of iPEDVPT-P5. Gene (s) other than S gene might also play a role in determining virulence.


2020 ◽  
Vol 240 ◽  
pp. 108511 ◽  
Author(s):  
Xian-Wei Wang ◽  
Mi Wang ◽  
Jing Zhan ◽  
Qian-Yu Liu ◽  
Lin-lin Fang ◽  
...  

1997 ◽  
Vol 69 (1-2) ◽  
pp. 191-195 ◽  
Author(s):  
Kiyoyasu Ishikawa ◽  
Hideto Sekiguchi ◽  
Tomoe Ogino ◽  
Shoko Suzuki

2021 ◽  
Vol 12 ◽  
Author(s):  
Dongliang Li ◽  
Yongtao Li ◽  
Yunchao Liu ◽  
Yumei Chen ◽  
Wenqiang Jiao ◽  
...  

Porcine epidemic diarrhea virus (PEDV) is the major pathogen that causes diarrhea and high mortality in newborn piglets with devastating impact to the pig industry. Recombination and mutation are the main driving forces of viral evolution and genetic diversity of PEDV. In 2016, an outbreak of diarrhea in piglets occurred in an intensive pig farm in Central China. A novel PEDV isolate (called HNAY) was successfully isolated from clinical samples. Sequence analysis and alignment showed that HNAY possessed 21-nucleotide (nt) insertion in its S1 gene, which has never been reported in other PEDV isolates. Moreover, the sequence of the insertion was identical with the sequence fragment in PEDV N gene. Notably, the HNAY strain exhibited two unique mutations (T500A and L521Y) in the neutralizing epitopes of the S1 protein that were different from those of other PEDV variant strains and CV777-based vaccine strains. Additionally, PEDV HNAY might be derived from a natural recombination between two Chinese variant PEDV strains. Animal experiments demonstrated that HNAY displayed higher pathogenicity compared with two other clinical isolates. This study lays the foundation for better understanding of the genetic evolution and molecular pathogenesis of PEDV.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 391 ◽  
Author(s):  
Pengwei Zhao ◽  
Song Wang ◽  
Zhi Chen ◽  
Jiang Yu ◽  
Rongzhi Tang ◽  
...  

A highly virulent porcine epidemic diarrhea virus (PEDV) appeared in China and spread rapidly to neighbor countries, which have led to great economic losses to the pig industry. In the present study, we isolated a PEDV using Vero cells and serially propagated 100 passages. PEDV SDSX16 was characterized in vitro and in vivo. The viral titers increased to 107.6 TCID50/mL (100th) by serial passages. The spike (S) gene and the whole gene of the SDSX16 virus was fully sequenced to assess the genetic stability and relatedness to previously identified PEDV. Along with successive passage in vitro, there were 18 nucleotides (nt) deletion occurred in the spike (S) gene resulting in a deletion of six amino acids when the SDSX16 strain was passaged to the 64th generation, and this deletion was stable until the P100. However, the ORF1a/b, M, N, E, and ORF3 genes had only a few point mutations in amino acids and no deletions. According to growth kinetics experiments, the SDSX16 deletion strain significantly enhanced its replication in Vero cells since it was passaged to the 64th generation. The animal studies showed that PEDV SDSX16-P10 caused more severe diarrhea and vomiting, fecal shedding, and acute atrophic enteritis than SDSX16-P75, indicating that SDSX16-P10 is enteropathogenic in the natural host, and the pathogenicity of SDSX16 decreased with successive passage in vitro. However, SDSX16-P10 was found to cause lower levels of cytokine expression than SDSX16-P75 using real-time PCR and flow cytometry, such as IL1β, IL6, IFN-β, TNF-α, indicating that SDSX16-P10 might inhibit the expression of cytokines. Our data indicated that successive passage in vitro resulted in virulent attenuation in vivo of the PEDV variant strain SDSX16.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 790
Author(s):  
Sung-Jae Kim ◽  
Van-Giap Nguyen ◽  
Thi-My-Le Huynh ◽  
Yong-Ho Park ◽  
Bong-Kyun Park ◽  
...  

Porcine epidemic diarrhea virus (PEDV) causes continuous, significant damage to the swine industry worldwide. By RT-PCR-based methods, this study demonstrated the ongoing presence of PEDV in pigs of all ages in Korea at the average detection rate of 9.92%. By the application of Bayesian phylogenetic analysis, it was found that the nucleocapsid (N) gene of PEDV could evolve at similar rates to the spike (S) gene at the order of 10−4 substitutions/site/year. Based on branching patterns of PEDV strains, three main N gene-base genogroups (N1, N2, and N3) and two sub-genogroups (N3a, N3b) were proposed in this study. By analyzing the antigenic index, possible antigenic differences also emerged in both the spike and nucleocapsid proteins between the three genogroups. The antigenic indexes of genogroup N3 strains were significantly lower compared with those of genogroups N1 and N2 strains in the B-cell epitope of the nucleocapsid protein. Similarly, significantly lower antigenic indexes in some parts of the B-cell epitope sequences of the spike protein (COE, S1D, and 2C10) were also identified. PEDV mutants derived from genetic mutations of the S and N genes may cause severe damage to swine farms by evading established host immunities.


2019 ◽  
Vol 31 (6) ◽  
pp. 909-912 ◽  
Author(s):  
Chunyan Jiang ◽  
Haijian He ◽  
Chaoying Zhang ◽  
Xiaoju Zhang ◽  
Jianfeng Han ◽  
...  

Swine diarrhea can be caused by multiple agents, including porcine epidemic diarrhea virus (PEDV), porcine sapelovirus (PSV), and porcine sapovirus (SaV). We designed a one-step triplex reverse-transcription PCR (RT-PCR) detection method including 3 pairs of primers that focused on the S1 gene of PEDV, a conserved gene of PSV, and the VP1 gene of SaV. The optimal concentrations of upstream and downstream primers in the triplex RT-PCR were 0.24 μM for PEDV, 0.15 μM for PSV, and 0.2 μM for SaV, and the optimal annealing temperature was 55.5°C. Triplex RT-PCR assessment of 402 piglet diarrhea samples was compared with conventional individual RT-PCR. Concordance rates in both tests for individual viruses were 100%, 97.6%, and 94.4% for PEDV, PSV, and SaV, respectively. PEDV, PSV, and SaV were detected in 57.2%, 10.4%, and 9.0% of the samples, respectively. The high sensitivity and specificity of this triplex RT-PCR–based detection method for PEDV, PSV, and SaV could allow rapid detection and analysis of mixed infections by these 3 viruses.


Sign in / Sign up

Export Citation Format

Share Document