porcine epidemic diarrhea virus
Recently Published Documents


TOTAL DOCUMENTS

813
(FIVE YEARS 281)

H-INDEX

51
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Qian Zhang ◽  
Dan Yi ◽  
Changzheng Ji ◽  
Tao Wu ◽  
Manli Wang ◽  
...  

Porcine epidemic diarrhea virus (PEDV) has reemerged as the main pathogen of piglets due to its high mutation feature. Monolaurin (ML) is a natural compound with a wide range of antibacterial and antiviral activities. However, the role of ML in PEDV infection is still unknown. This study aimed to evaluate the effect of ML on the growth performance, intestinal function, virus replication and cytokine response in piglets infected with PEDV, and to reveal the mechanism through proteomics analysis. Piglets were orally administrated with ML at a dose of 100 mg/kg·BW for 7 days before PEDV infection. Results showed that although there was no significant effect on the growth performance of piglets, ML administration alleviated the diarrhea caused by PEDV infection. ML administration promoted the recovery of intestinal villi, thereby improving intestinal function. Meanwhile, PEDV replication was significantly inhibited, and PEDV-induced expression of IL-6 and IL-8 were decreased with ML administration. Proteomics analyses showed that 38 proteins were differentially expressed between PEDV and ML+PEDV groups and were significantly enriched in the interferon-related pathways. This suggests ML could promote the restoration of homeostasis by regulating the interferon pathway. Overall, the present study demonstrated ML could confer a protective effect against PEDV infection in piglets and may be developed as a drug or feed additive to prevent and control PEDV disease.


Author(s):  
Liting Zhu ◽  
Shiguo Liu ◽  
Zewen Zhuo ◽  
Yanxi Lin ◽  
Yanni Zhang ◽  
...  

Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
Dianzhong Zheng ◽  
Xiaona Wang ◽  
Ning Ju ◽  
Zhaorui Wang ◽  
Ling Sui ◽  
...  

Porcine epidemic diarrhea (PED) induced by porcine epidemic diarrhea virus (PEDV) is an intestinal infectious disease in pigs that causes serious economic losses to the pig industry. To develop an effective oral vaccine against PEDV infection, we used a swine-origin Lactobacillus johnsonii (L. johnsonii) as an antigen delivery carrier. A recombinant strain pPG-T7g10-COE/L. johnsonii (L. johnsonii-COE) expressing COE protein (a neutralizing epitope of the viral spike protein) was generated. The immunomodulatory effect on dendritic cell in vitro and immunogenicity in pregnant sows was evaluated following oral administration. L. johnsonii-COE could activate monocyte-derived dendritic cell (MoDC) maturation and triggered cell immune responses. After oral vaccination with L. johnsonii-COE, levels of anti-PEDV-specific serum IgG, IgA, and IgM antibodies as well as mucosal secretory immunoglobulin A (SIgA) antibody were induced in pregnant sows. High levels of PEDV-specific SIgA and IgG antibodies were detected in the maternal milk, which provide effective protection for the piglets against PEDV infection. In summary, oral L. johnsonii-COE was able to efficiently activate anti-PEDV humoral and cellular immune responses, demonstrating potential as a vaccine for use in sows to provide protection of their piglets against PEDV.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2527
Author(s):  
Zheng Chen ◽  
Jinfeng Chen ◽  
Xiaodong Wei ◽  
Huiying Hua ◽  
Ruiming Hu ◽  
...  

Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, causes neonatal pig acute gastrointestinal infection with a characterization of severe diarrhea, vomiting, high morbidity, and high mortality, resulting in tremendous damages to the swine industry. Neither specific antiviral drugs nor effective vaccines are available, posing a high priority to screen antiviral drugs. The aim of this study is to investigate anti-PEDV effects of carbazole alkaloid derivatives. Eighteen carbazole derivatives (No.1 to No.18) were synthesized, and No.5, No.7, and No.18 were identified to markedly reduce the replication of enhanced green fluorescent protein (EGFP) inserted-PEDV, and the mRNA level of PEDV N. Flow cytometry assay, coupled with CCK8 assay, confirmed No.7 and No.18 carbazole derivatives displayed high inhibition effects with low cell toxicity. Furthermore, time course analysis indicated No.7 and No.18 carbazole derivatives exerted inhibition at the early stage of the viral life cycle. Collectively, the analysis underlines the benefit of carbazole derivatives as potential inhibitors of PEDV, and provides candidates for the development of novel therapeutic agents.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wanting Dong ◽  
Ning Ding ◽  
Yu Zhang ◽  
Zhen Tan ◽  
Xiangdong Ding ◽  
...  

The high mortality of neonatal piglets due to porcine epidemic diarrhea virus (PEDV) infection has caused huge economic losses to the pig industry. The intestinal microbiota is an important barrier against invaders entering the gastrointestinal route. In this study, we examined the differences between intestinal microbiota of PEDV-infected and healthy piglets. According to the viral copy numbers, 16 crossbred (Landrace-Yorkshire) piglets were divided into three groups: uninfected, low virus load, and high virus load groups. Next, 16S rRNA sequencing was performed to determine the microbiota composition in jejunal content and jejunal mucosal samples from the three groups. PEDV infection induced an imbalance in the microbiota of both jejunal content and jejunal mucosa. The abundance of phylum Firmicutes was higher in uninfected piglets than in infected piglets, whereas the abundance of Proteobacteria was lower in uninfected piglets. Principal coordinate analysis showed significant separation of jejunal microbiota between different groups. Linear discriminant analysis (LDA) effect size (LEfSe) identified Lactobacillus salivarius as a potential biomarker among three groups at the level of species. Then, in vitro, L. salivarius was able to suppress the infection of PEDV to IPEC-J2 cells and decreased the expression of GRP78 (Glucose-regulating protein 78). In addition, we detected the mRNA expression of genes involved in the FAK/PI3K/Akt signaling pathway. When IPEC-J2 cells were treated with L. salivarius before PEDV infection, the mRNA expression levels of ITGA1, ITGA5, ITGB5, FAK, PIK3R1, PIK3CA and AKT1 were significantly higher than those in the control cells (without treatment) at different times post-infection, indicating that L. salivarius may upregulate the FAK/PI3K/Akt signaling pathway in IPEC-J2 cells to resist PEDV infection. In summary, PEDV infection altered microbial communities in both jejunal content and jejunal mucosa. L. salivarius has a protective effect against PEDV infection in IPEC-J2 cells. This study provides a potentially effective strategy to prevent the occurrence and control the spread of PED in the pig production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Hu ◽  
Xiaohong Xie ◽  
Lingchen Yang ◽  
Aibing Wang

Porcine epidemic diarrhea virus (PEDV), a coronavirus pathogen of the pig intestinal tract, can cause fatal watery diarrhea in piglets, thereby causing huge economic losses to swine industries around the world. The pathogenesis of PEDV has intensively been studied; however, the viral proteins of PEDV and the host factors in target cells, as well as their interactions, which are the foundation of the molecular mechanisms of viral infection, remain to be summarized and updated. PEDV has multiple important structural and functional proteins, which play various roles in the process of virus infection. Among them, the S and N proteins play vital roles in biological processes related to PEDV survival via interacting with the host cell proteins. Meanwhile, a number of host factors including receptors are required for the infection of PEDV via interacting with the viral proteins, thereby affecting the reproduction of PEDV and contributing to its life cycle. In this review, we provide an updated understanding of viral proteins and host factors, as well as their interactions in terms of PEDV infection. Additionally, the effects of cellular factors, events, and signaling pathways on PEDV infection are also discussed. Thus, these comprehensive and profound insights should facilitate for the further investigations, control, and prevention of PEDV infection.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1479
Author(s):  
Thi Thu Hang Vu ◽  
Minjoo Yeom ◽  
Hyoungjoon Moon ◽  
Thi Nhan Tran ◽  
Van Phan Le ◽  
...  

The high antigenic diversity of porcine epidemic diarrhea virus (PEDV) means that porcine epidemic diarrhea (PED) is a challenge for the global pig industry. Understanding the circulation of the virus to determine an optimal vaccine strategy is important in controlling the disease. In this study, we describe the genetic diversity of circulating PEDV based on the full sequences of spike genes of eight positive samples collected in Vietnam since 2018. Additionally, we developed a live attenuated vaccine candidate from the cell-adapted PEDV2 strain, which was continuously passaged until level 103 in VERO-CCL81 cells. PEDV2-p103, which belongs to the emerging non-S INDEL cluster, exhibited low virus shedding, did not induce lesions in the small intestine of challenged piglets, and had a high titer in the VERO-CCL81 cell at 48 h post-infection. These results suggest that the PEDV2-p103 strain could be a potential oral attenuated vaccine, and its immunogenicity and efficacy should be further assessed through in vivo tests.


2021 ◽  
pp. 2913-2918
Author(s):  
Jiraporn Sritun ◽  
Natnaree Inthong ◽  
Siriluk Jala ◽  
Sakuna Phatthanakunanan ◽  
Khomson Satchasataporn ◽  
...  

Background and Aim: Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea in suckling piglets, leading to severe economic losses in the swine industry. Commercial vaccines have limited effectiveness against different genogroups of PEDV and the shedding of virus. The C-terminal of the S1 domain and the N-terminal of the S2 domain (S1-2) protein of the spike (S) protein have four neutralizing epitopes. However, research on the expression of the S1-2 segment of the S gene has been limited. In this study, we expressed a recombinant S1-2 protein of the S protein of the PEDV Thai isolate and characterized the immunological properties of the recombinant S1-2 protein. Materials and Methods: The S1-2 segment of the S gene of the PEDV Thai isolate (G2b) was amplified, cloned into the pBAD202/D-TOPO® vector (Invitrogen, Carlsbad, CA, USA), and expressed in Escherichia coli. The optimum concentration of arabinose and the optimum induction time for the expression of the recombinant S1-2 protein were determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The immunogenic reactivity of the recombinant S1-2 protein was determined using Western blot analysis with rabbit polyclonal antibodies against the SM98 strain of PEDV (G1a). Results: The recombinant S1-2 segment of the S gene of the PEDV Thai isolate protein was cloned and the recombinant S1-2 protein was successfully expressed. The optimum concentration of arabinose and the optimum induction time for the induction of the recombinant S1-2 protein were 0.2% and 8 h, respectively. The recombinant S1-2 protein reacted specifically with both rabbit anti-histidine polyclonal antibodies and rabbit anti-PEDV polyclonal antibodies. Conclusion: The recombinant S1-2 protein reacted with rabbit anti-PEDV polyclonal antibodies induced by the different PEDV genogroup. Therefore, the recombinant S1-2 protein may be a useful tool for the development of a diagnostic test for PEDV or for a vaccine against PEDV.


Sign in / Sign up

Export Citation Format

Share Document