The high-throughput production of dsRNA against sacbrood virus for use in the honey bee Apis cerana (Hymenoptera: Apidae)

Virus Genes ◽  
2016 ◽  
Vol 52 (5) ◽  
pp. 698-705 ◽  
Author(s):  
Jianqing Zhang ◽  
Yi Zhang ◽  
Richou Han
VirusDisease ◽  
2018 ◽  
Vol 29 (4) ◽  
pp. 453-460 ◽  
Author(s):  
R. Aruna ◽  
M. R. Srinivasan ◽  
V. Balasubramanian ◽  
R. Selvarajan

2019 ◽  
Vol 112 (5) ◽  
pp. 2055-2066 ◽  
Author(s):  
Chong-Yu Ko ◽  
Zong-Lin Chiang ◽  
Ruo-Jyun Liao ◽  
Zih-Ting Chang ◽  
Ju-Chun Chang ◽  
...  

AbstractSince 2016, Apis cerana sacbrood virus (AcSBV) has been recorded in Taiwan. It is epizootic in Apis cerana (Hymenoptera: Apidae) and causing serious loss of A. cerana. Herein, we performed a long-term survey of AcSBV prevalence in the populations of A. cerana in Northern Taiwan from January 2017 to July 2018. The surveillance of AcSBV prevalence in A. mellifera (Hymenoptera: Apidae) populations was starting and further confirmed by sequencing since April 2017; thus, these data were also included in this survey. In our survey, the average prevalence rates of AcSBV were 72 and 53% in A. cerana and A. mellifera, respectively, in 2017, which decreased to 45 and 27% in 2018. For the spatial analysis of AcSBV in two honey bee populations, Hsinchu showed the highest prevalence, followed by New Taipei, Yilan, Taipei, and Keelung, suggesting that AcSBV might have come from the southern part of Taiwan. Interestingly, the AcSBV prevalence rates from A. cerana and A. mellifera cocultured apiaries gradually synchronized. The result of phylogenetic analysis and comparison of the annual AcSBV prevalence in A. cerana-only, A. mellifera-only, and A. cerana/A. mellifera cocultured sample sites indicate cross-infection between A. cerana and A. mellifera; however, AcSBV may lose the advantage of virulence in A. mellifera. The evidence suggested that the transmission of AcSBV might occur among these two honey bee species in the field. Therefore, A. mellifera may serve as a guard species to monitor AcSBV in A. cerana, but the cross-infection still needs to be surveyed.


2016 ◽  
Vol 154 (2-3) ◽  
pp. 258-262 ◽  
Author(s):  
C. Park ◽  
H.S. Kang ◽  
J. Jeong ◽  
I. Kang ◽  
K. Choi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yulong Guo ◽  
Zhengyi Zhang ◽  
Mingsheng Zhuang ◽  
Liuhao Wang ◽  
Kai Li ◽  
...  

The honey bee is one of the most important pollinators in the agricultural system and is responsible for pollinating a third of all food we eat. Sacbrood virus (SBV) is a member of the virus family Iflaviridae and affects honey bee larvae and causes particularly devastating disease in the Asian honey bees, Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV identified in China and has resulted in mass death of honey bees in China in recent years. However, the molecular mechanism underlying SBV infection in the Asian honey bee has remained unelucidated. In this present study, we employed high throughput next-generation sequencing technology to study the host transcriptional responses to CSBV infection in A. cerana larvae, and were able to identify genome-wide differentially expressed genes associated with the viral infection. Our study identified 2,534 differentially expressed genes (DEGs) involved in host innate immunity including Toll and immune deficiency (IMD) pathways, RNA interference (RNAi) pathway, endocytosis, etc. Notably, the expression of genes encoding antimicrobial peptides (abaecin, apidaecin, hymenoptaecin, and defensin) and core components of RNAi such as Dicer-like and Ago2 were found to be significantly upregulated in CSBV infected larvae. Most importantly, the expression of Sirtuin target genes, a family of signaling proteins involved in metabolic regulation, apoptosis, and intracellular signaling was found to be changed, providing the first evidence of the involvement of Sirtuin signaling pathway in insects’ immune response to a virus infection. The results obtained from this study provide novel insights into the molecular mechanism and immune responses involved in CSBV infection, which in turn will contribute to the development of diagnostics and treatment for the diseases in honey bees.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Liping Sun ◽  
Xueqi Zhang ◽  
Shufa Xu ◽  
Chunsheng Hou ◽  
Jin Xu ◽  
...  

Abstract Background Sacbrood is an infectious disease of the honey bee caused by Scbrood virus (SBV) which belongs to the family Iflaviridae and is especially lethal for Asian honeybee Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV. Currently, there is a lack of an effective antiviral agent for controlling CSBV infection in honey bees. Methods Here, we explored the antiviral effect of a Chinese medicinal herb Radix isatidis on CSBV infection in A. cerana by inoculating the 3rd instar larvae with purified CSBV and treating the infected bee larvae with R. isatidis extract at the same time. The growth, development, and survival of larvae between the control and treatment groups were compared. The CSBV copy number at the 4th instar, 5th instar, and 6th instar larvae was measured by the absolute quantification PCR method. Results Bioassays revealed that R. isatidis extract significantly inhibited the replication of CSBV, mitigated the impacts of CSBV on larval growth and development, reduced the mortality of CSBV-infected A. cerana larvae, and modulated the expression of immune transcripts in infected bees. Conclusion Although the mechanism underlying the inhibition of CSBV replication by the medicine plant will require further investigation, this study demonstrated the antiviral activity of R. isatidis extract and provides a potential strategy for controlling SBV infection in honey bees.


1990 ◽  
Vol 80 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Annette K. Walker ◽  
N. K. Joshi ◽  
S. K. Verma

AbstractRecords of braconid parasitoids attacking bees (Apidae) are reviewed and their biology is discussed. The adult of Syntretomorpha szaboi Papp (Braconidae) is redescribed, the female for the first time. The final-instar larva is also described for the first time and the implications of interpreting larval characters are discussed. The Oriental honey bee, Apis cerana Fabricius, is recorded here for the first time as the host of S. szaboi.


2017 ◽  
Vol 56 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Xiangjie Zhu ◽  
Shujing Zhou ◽  
Xinjian Xu ◽  
Jianwen Wang ◽  
Yinglong Yu ◽  
...  

2021 ◽  
Author(s):  
Jay D. Evans ◽  
Olubukola Banmeke ◽  
Evan C. Palmer-Young ◽  
Yanping Chen ◽  
Eugene V. Ryabov

ABSTRACTHoney bees face numerous pests and pathogens but arguably none are as devastating as Deformed wing virus (DWV). Development of antiviral therapeutics and virus-resistant honey bee lines to control DWV in honey bees is slowed by the lack of a cost-effective high-throughput screening of DWV infection. Currently, analysis of virus infection and screening for antiviral treatments in bees and their colonies is tedious, requiring a well-equipped molecular biology laboratory and the use of hazardous chemicals. Here we utilize a cDNA clone of DWV tagged with green fluorescent protein (GFP) to develop the Beeporter assay, a method for detection and quantification of DWV infection in live honey bees. The assay involves infection of honey bee pupae by injecting a standardized DWV-GFP inoculum, followed by incubation for up to 44 hours. GFP fluorescence is recorded at intervals via commonly available long-wave UV light sources and a smartphone camera or a standard ultraviolet transilluminator gel imaging system. Nonlethal DWV monitoring allows high-throughput screening of antiviral candidates and a direct breeding tool for identifying honey bee parents with increased antivirus resistance. For even more rapid drug screening, we also describe a method for screening bees using 96-well trays and a spectrophotometer.


Sign in / Sign up

Export Citation Format

Share Document