neuron membrane
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 19)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Qiuzhen Wan ◽  
Zidie Yan ◽  
Fei Li ◽  
Jiong Liu ◽  
Simiao Chen

Abstract This paper investigates a Hopfield neural network (HNN) under the simulation of external electromagnetic radiation and dual bias currents, in which the fluctuation of magnetic flux across the neuron membrane is used to emulate the influence of electromagnetic radiation. Utilizing conventional analytical methods, the basic properties of the proposed Hopfield neural network are discussed. Due to the addition of electromagnetic radiation and dual bias currents, the Hopfield neural network shows high sensitivity to system parameters and initial conditions. The proposed Hopfield neural network possesses multistability with periodic attractor, quasi-periodic attractor, chaotic attractor and transient chaotic attractor, and all of the attractors are hidden attractors because there is no equilibrium point in the system. In particular, when the neuron membrane magnetic flux is different, the system can present transient chaos with different chaotic times. More interestingly, with the change of system parameters, the proposed Hopfield neural network can exhibit parallel bifurcation behaviors. Finally, the Multisim simulation and hardware experiment results based on discrete electronic components are conducted to support the numerical ones. These results could give useful information to the study of nonlinear dynamic characteristics of the Hopfield neural network.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zheng-Quan Wang ◽  
Chun Wu ◽  
Gen-Ceng Li ◽  
Shu-Mei Nuo ◽  
Ning-Na Yin ◽  
...  

In Lepidoptera, RNA sequencing has become a useful tool in identifying chemosensory genes from antennal transcriptomes, but little attention is paid to non-antennal tissues. Though the antennae are primarily responsible for olfaction, studies have found that a certain number of chemosensory genes are exclusively or highly expressed in the non-antennal tissues, such as proboscises, legs and abdomens. In this study, we report a global transcriptome of 16 tissues from Dioryctria abietella, including chemosensory and non-chemosensory tissues. Through Illumina sequencing, totally 952,658,466 clean reads were generated, summing to 142.90 gigabases of data. Based on the transcriptome, 235 chemosensory-related genes were identified, comprising 42 odorant binding proteins (OBPs), 23 chemosensory proteins (CSPs), 75 odorant receptors (ORs), 62 gustatory receptors (GRs), 30 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). Compared to a previous study in this species, 140 novel genes were found. A transcriptome-wide analysis combined with PCR results revealed that except for GRs, the majority of other five chemosensory gene families in Lepidoptera were expressed in the antennae, including 160 chemosensory genes in D. abietella. Using phylogenetic and expression profiling analyses, members of the six chemosensory gene repertoires were characterized, in which 11 DabiORs were candidates for detecting female sex pheromones in D. abietella, and DabiOR23 may be involved in the sensing of plant-derived phenylacetaldehyde. Intriguingly, more than half of the genes were detected in the proboscises, and one fourth of the genes were found to have the expression in the legs. Our study not only greatly extends and improves the description of chemosensory genes in D. abietella, but also identifies potential molecular targets involved in olfaction, gustation and non-chemosensory functions for control of this pest.


Author(s):  
Yu Pan ◽  
Xinxin Zhang ◽  
Zhun Wang ◽  
Lizhong Qi ◽  
Xinsheng Zhang ◽  
...  

Abstract The rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a destructive pest that causes damage to rice crops worldwide. The olfactory system is critical for host or mate location by weevils, but only limited information about the molecular mechanism of olfaction-related behaviour has been reported in this insect. In this study, we conducted SMRT-seq transcriptome analysis and obtained 54,378 transcripts, 38,706 of which were annotated. Based on these annotations, we identified 40 candidate chemosensory genes, including 31 odorant-binding proteins (OBPs), six chemosensory proteins (CSPs) and three sensory neuron membrane proteins (SNMPs). Phylogenetic analysis showed that LoryOBPs, LoryCSPs and LorySNMPs were distributed in various clades. The results of tissue expression patterns indicated that LoryOBPs were highly abundant in the antennae, whereas LoryCSPs were highly abundant not only in the antennae but also in the abdomen, head and wings. Our findings substantially expand the gene database of L. oryzophilus and may serve as a basis for identifying novel targets to disrupt key olfactory genes, potentially providing an eco-friendly strategy to control this pest in the future.


2021 ◽  
Author(s):  
Chao Zhang ◽  
Qi Xu ◽  
Zhiping Xu ◽  
Long Wang ◽  
Zewen Liu ◽  
...  

Photopharmacology has changed established methods of studying receptor functions, allowing for increasing spatiotemporal resolution. However, no photopharmacological tools are available for the invertebrate nicotinic acetylcholine receptor (nAChR). Here, we report a photochromic ligand, dithienylethene-imidacloprid (DitIMI), targeting invertebrate nAChR. We demonstrated that DitIMI has low spontaneous in vivo and in vitro activity but can be photoisomerized to a highly active closed-form. This photoisomerization can further be translated to photomodulation of neuron membrane potential and behavioral responses of living mosquito larvae and American cockroaches. Furthermore, we discovered that DitIMI is a specific reporter for fluorescence polarization based high-throughput screening of nAChR ligands.


Author(s):  
Ilya V. Rogachevskii ◽  
Vera B. Plakhova ◽  
Valentina A. Penniyaynen ◽  
Stanislav G. Terekhin ◽  
Svetlana A. Podzorova ◽  
...  

A gamma-pyrone derivative, comenic acid, activates the opioid-like receptor-mediated signaling pathway that modulates the NaV1.8 channels in the primary sensory neuron membrane. These channels are responsible for generation of the nociceptive signal; gamma-pyrones can therefore have a great therapeutic potential as analgesics, and this effect deserves a deeper understanding. The novelty of our approach to the design of a medicinal substance is based on a combination of the data obtained on living neurons using very sensitive physiological methods and the results of quantum-chemical calculations. This approach allows to correlate the molecular structure of gamma-pyrones with their ability to evoke a physiological response of the neuron. Comenic acid can bind two calcium cations. One of them is chelated by the carbonyl and the hydroxyl functional groups, while another one forms the salt bond with the carboxylate anion. Calcium-bound gamma-pyrones are fundamentally different in electrostatic properties from the free gamma-pyrone molecules. These two calcium ions are the key elements involved in ligand-receptor binding. It is very likely ion-ionic interactions between these cations and anionic functional groups of the opioid-like receptor that activate the latter. The calculated intercationic distance of 9.5 Å is a structural criterion for effective ligand-receptor binding of calcium-bound gamma-pyrones.


BIOPHYSICS ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 579-588
Author(s):  
I. V. Rogachevsky ◽  
A. D. Kalinina ◽  
V. A. Penniyaynen ◽  
S. G. Terekhin ◽  
S. A. Podzorova ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6435
Author(s):  
Marco Diociaiuti ◽  
Roberto Bonanni ◽  
Ida Cariati ◽  
Claudio Frank ◽  
Giovanna D’Arcangelo

It has been proposed that a “common core” of pathologic pathways exists for the large family of amyloid-associated neurodegenerations, including Alzheimer’s, Parkinson’s, type II diabetes and Creutzfeldt–Jacob’s Disease. Aggregates of the involved proteins, independently from their primary sequence, induced neuron membrane permeabilization able to trigger an abnormal Ca2+ influx leading to synaptotoxicity, resulting in reduced expression of synaptic proteins and impaired synaptic transmission. Emerging evidence is now focusing on low-molecular-weight prefibrillar oligomers (PFOs), which mimic bacterial pore-forming toxins that form well-ordered oligomeric membrane-spanning pores. At the same time, the neuron membrane composition and its chemical microenvironment seem to play a pivotal role. In fact, the brain of AD patients contains increased fractions of anionic lipids able to favor cationic influx. However, up to now the existence of a specific “common structure” of the toxic aggregate, and a “common mechanism” by which it induces neuronal damage, synaptotoxicity and impaired synaptic transmission, is still an open hypothesis. In this review, we gathered information concerning this hypothesis, focusing on the proteins linked to several amyloid diseases. We noted commonalities in their structure and membrane activity, and their ability to induce Ca2+ influx, neurotoxicity, synaptotoxicity and impaired synaptic transmission.


2021 ◽  
Author(s):  
Ryan Tomastik ◽  
Abhishek Dutta

Abstract This paper aims to discuss the control of a neuron’s firing. It is desired to control the neuron by injecting a current, whichallows the voltage of the neuron membrane to reach what is called the threshold voltage. When a neuron reaches this voltage,the potassium and sodium ion gates open allowing for the neuron to fire an action potential, observed as a voltage spike.Controlling this effect is helpful for those with certain diseases or disabilities. Four types of controllers are designed andsimulated on both the nonlinear system of the neuron and its linearized form, and all are found to meet specifications.


Author(s):  
Xiang Zhou ◽  
Jixing Guo ◽  
Mingxia Zhang ◽  
Chunxiu Bai ◽  
Zheng Wang ◽  
...  

Abstract Crematogaster rogenhoferi (Hymenoptera: Formicidae), an omnivorous ant, is one of the dominant predatory natural enemies of a soft scale pest, Parasaissetia nigra Nietner (Homoptera: Coccidae), and can effectively control P. nigra populations in rubber forests. Olfaction plays a vital role in the process of predation. However, the information about the molecular mechanism of olfaction-evoked behaviour in C. rogenhoferi is limited. In this study, we conducted antennal transcriptome analysis to identify candidate olfactory genes. We obtained 53,892 unigenes, 16,185 of which were annotated. Based on annotations, we identified 49 unigenes related to chemoreception, including four odourant-binding proteins, three chemosensory proteins, 37 odourant receptors, two odourant ionotropic receptors and three sensory neuron membrane proteins. This is the first report on the molecular basis of the chemosensory system of C. rogenhoferi. The findings provide a basis for elucidating the molecular mechanisms of the olfactory-related behaviours of C. rogenhoferi, which would facilitate a better application of C. rogenhoferi as a biological control agent.


Sign in / Sign up

Export Citation Format

Share Document